: Intuitionistic Set Theory

Intuitionistic Set Theory

or How to construct semi-rings Part III

Buch beschaffen

Forschungsergebnisse zur Informatik, Band 58

Hamburg , 298 Seiten

ISBN 978-3-8300-0378-6 (Print)

Zum Inhalt

Hilbert‘s Program is completed by a finite method, which constructs propositions. The constructed propositions can make assertions about infinitive sets. Intuitionistic Set Theory generalizes the construction of an algebraic-real number u.u is a complex number, which satisfies a polynomial equation with rational coefficients not all zero:

a0 + a1u + a2u2 + ... - an-1un-1 + anun = 0 (ai in Q, not all ai=0).


A proof is an eigenvector in a Banach-semi-space, which satisfies is characteristic polynominal

1-λ) (λ2-λ) ... (λn-1-λ) (λn-λ) = 0.

The eigenvalues λi are constructed by a proof.

A proof is a regular endomorphism. Intuitionistic Set Theory uses for the calculation of a semi-ring known propositions (operators).

This Part III generalizes Group-Theory.

Ihr Werk im Verlag Dr. Kovač

Möchten Sie Ihre wissenschaftliche Arbeit publizieren? Erfahren Sie mehr über unsere günstigen Konditionen und unseren Service für Autorinnen und Autoren.

Weitere Bücher des Autors

Forschungsarbeit: Intuitionistic Set Theory

Intuitionistic Set Theory

or How to construct semi-rings. Part IV

Hamburg , ISBN 978-3-8300-0691-6 (Print)


: Intuitionistic Set Theory Part II

Intuitionistic Set Theory Part II

Hamburg , ISBN 978-3-86064-617-5 (Print & eBook)


: Intuitionistic Set Theory Part I

Intuitionistic Set Theory Part I

Hamburg , ISBN 978-3-86064-616-8 (Print & eBook)