Conrad KuckIntuitionistic Set Theory
or How to construct semi-rings Part III
Forschungsergebnisse zur Informatik, Band 58
Hamburg 2001, 298 Seiten
ISBN 978-3-8300-0378-6 (Print)
Zum Inhalt
Hilbert‘s Program is completed by a finite method, which constructs propositions. The constructed propositions can make assertions about infinitive sets. Intuitionistic Set Theory generalizes the construction of an algebraic-real number u.u is a complex number, which satisfies a polynomial equation with rational coefficients not all zero:
a0 + a1u + a2u2 + ... - an-1un-1 + anun = 0 (ai in Q, not all ai=0).
A proof is an eigenvector in a Banach-semi-space, which satisfies is characteristic polynominal
(λ1-λ) (λ2-λ) ... (λn-1-λ) (λn-λ) = 0.
The eigenvalues λi are constructed by a proof.
A proof is a regular endomorphism. Intuitionistic Set Theory uses for the calculation of a semi-ring known propositions (operators).
This Part III generalizes Group-Theory.
- Intuitionistic Set Theory, Part I:ISBN 3-86064-616-8
- Intuitionistic Set Theory, Part II:ISBN 3-86064-617-6
- Intuitionistic Set Theory, Part IV:ISBN 3-8300-0691-8
Ihr Werk im Verlag Dr. Kovač
Weitere Bücher des Autors
or How to construct semi-rings. Part IV
Hamburg 2002, ISBN 978-3-8300-0691-6 (Print)