Conrad KuckIntuitionistic Set Theory
or How to construct semi-rings Part III
Forschungsergebnisse zur Informatik, Band 58
Hamburg 2001, 298 Seiten
ISBN 978-3-8300-0378-6 (Print)
Zum Inhalt
Hilbert‘s Program is completed by a finite method, which constructs propositions. The constructed propositions can make assertions about infinitive sets. Intuitionistic Set Theory generalizes the construction of an algebraic-real number u.u is a complex number, which satisfies a polynomial equation with rational coefficients not all zero:
a0 + a1u + a2u2 + ... - an-1un-1 + anun = 0 (ai in Q, not all ai=0).
A proof is an eigenvector in a Banach-semi-space, which satisfies is characteristic polynominal
(λ1-λ) (λ2-λ) ... (λn-1-λ) (λn-λ) = 0.
The eigenvalues λi are constructed by a proof.
A proof is a regular endomorphism. Intuitionistic Set Theory uses for the calculation of a semi-ring known propositions (operators).
This Part III generalizes Group-Theory.
- Intuitionistic Set Theory, Part I:ISBN 3-86064-616-8
- Intuitionistic Set Theory, Part II:ISBN 3-86064-617-6
- Intuitionistic Set Theory, Part IV:ISBN 3-8300-0691-8
Ihr Werk im Verlag Dr. Kovač
Möchten Sie Ihre wissenschaftliche Arbeit publizieren? Erfahren Sie mehr über unsere günstigen Konditionen und unseren Service für Autorinnen und Autoren.
Weitere Bücher des Autors
or How to construct semi-rings. Part IV
Hamburg 2002, ISBN 978-3-8300-0691-6 (Print)