: Intuitionistic Set Theory

Intuitionistic Set Theory

or How to construct semi-rings Part III

Forschungsergebnisse zur Informatik, Band 58

Hamburg , 298 Seiten

ISBN 978-3-8300-0378-6 (Print)

Zum Inhalt

Hilbert‘s Program is completed by a finite method, which constructs propositions. The constructed propositions can make assertions about infinitive sets. Intuitionistic Set Theory generalizes the construction of an algebraic-real number u.u is a complex number, which satisfies a polynomial equation with rational coefficients not all zero:

a0 + a1u + a2u2 + ... - an-1un-1 + anun = 0 (ai in Q, not all ai=0).


A proof is an eigenvector in a Banach-semi-space, which satisfies is characteristic polynominal

1-λ) (λ2-λ) ... (λn-1-λ) (λn-λ) = 0.

The eigenvalues λi are constructed by a proof.

A proof is a regular endomorphism. Intuitionistic Set Theory uses for the calculation of a semi-ring known propositions (operators).

This Part III generalizes Group-Theory.

Ihr Werk im Verlag Dr. Kovač

Weitere Bücher des Autors

Forschungsarbeit: Intuitionistic Set Theory

Intuitionistic Set Theory

or How to construct semi-rings. Part IV

Hamburg , ISBN 978-3-8300-0691-6 (Print)


: Intuitionistic Set Theory Part II

Intuitionistic Set Theory Part II

Hamburg , ISBN 978-3-86064-617-5 (Print & eBook)


: Intuitionistic Set Theory Part I

Intuitionistic Set Theory Part I

Hamburg , ISBN 978-3-86064-616-8 (Print & eBook)