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Chapter 1

Introduction

The theory of investment has to address the fact that investment decisions

on the majority of wealth are delegated to financial professionals. Out-

sourcing and delegating investment authority has gained attention recently

specifically by investment companies. German investment companies are

allowed to outsource investment advisory responsibilities to third parties

by the amendment of the Act on Investment Companies.1 In order to in-

vestigate the investment process of delegating financial decisions, insights

offered by portfolio theory and principal-agent theory need to be integrated

into a comprehensive theory of delegated investing. The scientific explo-

ration of this field and its implications on asset pricing is identified to be

the “next frontier” of research, as noted by Allen (2001) and Ambachtsheer

(2005).

Cornell and Roll (2005) present an asset pricing model with delegating

investors and conclude that, when all decisions are delegated, asset pric-

ing depends on objective functions of institutional investors, not on utility

functions of individuals. We advance their approach by arguing that in-

1On March 20, 2002, the German government passed the amendment of the Act on Investment Compa-

nies (“viertes Finanzmarktförderungsgesetz”) that allows investors to outsource discretionary investment

advisory responsibilities to third parties such as Master KAGs (“Kapitalanlagegesellschaften”). See also

page 106.
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vestors do have instruments to control the agents. Although investors may

be less informed about the financial market, they can control their agents

by setting risk limits. The institutional implementation of this kind of con-

trol are departments for financial controlling and risk management. Their

purpose is to prevent severe losses and to control financial risks and success

via given risk limits and return targets. This dissertation presents models

of risk controling delegated investment decisions and studies implications

on asset pricing.

The proposed investment theory integrates principal-agent issues into port-

folio theory. In our model framework, investors delegate portfolio selection

to portfolio managers due to lack of information. The investor can de-

fine a strategic benchmark portfolio according to the investment objective

and improve it by adding active management. The active management’s

flexibility in deviating from the benchmark can be controlled via the size

of tracking error constraints. Roll (1992) derives the agent’s benchmark-

relative portfolio selection in the presence of tracking error constraints. We

show how to set the constraints optimally such that the delegated relative

portfolio selection is optimal for the overall absolute objective.

The analysis may be specifically useful for the management of funds as one

of the investigated objectives is minimizing the probability of the portfolio

return falling short a fixed target return. This was introduced as “safety

first” approach by Roy (1952). Benchmark orientation and shortfall mini-

mization is e.g. relevant for pension funds that guarantee a minimum return

as well as participation in benchmark performance. Furthermore, we also

study the optimal active risk allocation when the principal’s objective is

to minimize the delegated portfolio’s Value at Risk. An optimal active

risk allocation for the delegated investment decisions ensures that the ex-

tend of active management that is added to the benchmark allocation is

chosen optimally for the overall absolute objective. We further investigate

whether it is possible to separate asset allocation and active risk allocation
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in delegated portfolio management.

The contributions to the literature are on following fields of the theory of

investing:

• Information theory: The models are able to explain that investors

delegate investment decisions to professionals due to lack of informa-

tion. They show which financial information is necessary in order

to control the agent’s portfolio selection with constraints. Type and

value of portfolio constraints are chosen depending on the principal’s

level of information.

• Principal-agent theory: The models incorporate typical principal-

agent relationships of the investment process. Investors decide on the

optimal risk allocation in order to give the right amount of flexibility

to the delegated investment decisions and to induce the agents to

select portfolios on their behalf.

• Portfolio theory: We integrate benchmark oriented investing and

shortfall-risk based objectives. Closed form solutions are given for

the optimal amount of active risk, e.g. to implement the safety first

approach in delegated investing or to minimize the portfolio’s Value

at Risk.

• Governance of funds: We study the impact of the chosen type of con-

straints on portfolio selection and resulting performance. The models

represent possible organizational set-ups of delegating investment au-

thority.

Chapters 2 and 3 review classical results of portfolio theory concerning the

mean-variance frontier and results of portfolio selection when a benchmark

is given. Chapter 4 contributes to the literature by combining benchmark

oriented investing and the safety first approach: The investor delegates
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portfolio selection to a benchmark outperforming portfolio manager and

uses benchmark tracking constraints for minimizing the probability of the

delegated portfolio falling short a target return. Chapter 5 derives optimal

constraints for a delegating investor who aims at minimizing the portfo-

lio’s Value at Risk. Chapter 6 studies implications of delegated investing

on market equilibrium when all delegating investors minimize shortfall risk.

Figure 1.1 shows the structure of the model development so far. In addi-

tion, chapter 7 studies the simultaneous strategic asset and risk allocation

when investment decisions are delegated to multiple agents.

Portfolio selection
- Mean variance
- Safety first
- Value at Risk
Chapter 2

Benchmark-relative
portfolio selection
Chapter 3

�

Principal

�

Agent

Principal delegates portfolio selection to an agent
Chapter 4: Principal minimizes shortfall probability

Chapter 5: Principal minimizes Value at Risk

�

Implications of delegated investing on asset pricing
Chapter 6

Figure 1.1: Outline of the Model Presentation in Chapters 2 – 6
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Chapter 2

Portfolio Selection

This chapter provides a comprehensive review of classical results of port-

folio theory. The essential topic of portfolio theory is the allocation of

investments in assets such that the relationship of risk and return is op-

timized. This chapter presents central ideas and derives key results for

the optimal portfolio selection. These classical models are the basis for

developing models of delegated investing in subsequent chapters.

Portfolios with minimum risk for a given expected return characterize the

risk-return relationship of the optimal combination of investment oppor-

tunities. A central element of the presentation of this chapter is the infor-

mation matrix which can be used to describe the relationship of expected

return and variance of portfolios with minimum risk. The information ma-

trix is the key tool for deriving the optimal portfolio selection based on

risk measures such as the variance of return or the probability of missing

a target return.

Section 2.1 provides an introduction and overview of standard problems

of portfolio theory. Since most results are well known in literature, this

section already provides references to the solutions which the interested

reader finds fully elaborated in the subsequent sections. Sections 2.2 –

2.4 study optimal portfolios of exclusively risky assets based on the risk
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measures variance and shortfall probability. A riskless asset is added in

section 2.5 where optimal portfolios with minimum variance are derived.

The last section 2.6 studies optimal asset allocations for each model based

on historical data of national indices.

2.1 Introduction to Portfolio Selection

Portfolio theory is concerned with the relationship of risk and return when

investment opportunities are combined. A typical task is determining op-

timal portfolios according to a given objective such as minimizing the vari-

ance of return. This section introduces the reader to classical portfolio

selection problems. The basic model assumptions of portfolio theory are:

Assumption 2.1 (Frictionless Market).

There are no market frictions such as transaction costs, taxes, shortsale

constraints and assets are divisible.

Assumption 2.2 (Risky Assets).

There are n risky assets that are traded in the market and no riskless asset

is available. The asset returns Ri, i = 1, . . . , n, have expected returns

μ = (μ1, . . . , μn)
′ and positive definite covariance matrix V ≡ (σi,j)i,j=1,...,n,

where σi,j ≡ Cov(Ri, Rj). There are at least two assets with distinct

expected returns.

Assumption 2.3 (Mean-Variance Criterion).

The investor chooses portfolios based on the mean-variance criterion: Port-

folio P1 is preferred to portfolio P2 according to the mean-variance criterion

if and only if

a) μP1
≥ μP2

and σP1
< σP2

or b) μP1
> μP2

and σP1
≤ σP2

.
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A portfolio P is efficient if there does not exist a portfolio that is preferred

to P according to the mean-variance criterion. Markowitz (1952) explores

the problem of an investor who wants to earn a certain expected return and

diversify the risks of the investments. More formally, the investor wants to

compose a portfolio xP = (x1, . . . , xn)
′ that minimizes the risk measured

by the variance of the return, σ2
P = x′

PV xP =
∑n

i=1
∑n

j=1 xixjσi,j, for a

given level of expected return μP = x′
Pμ =

∑n
i=1 xiμi, where xi denotes

the proportion of total wealth invested in the ith asset. This problem is

known as the standard problem of portfolio theory.

Problem 2.1 (Minimize Variance Given Expected Portfolio Return).

Determine the optimal portfolio composition such that the variance of the

portfolio return is minimized for a given expected portfolio return:

objective: min
xP

σ2
P

constraints: x′
Pμ = μP

x′
P1 = 1 .

The solution of this problem is called frontier portfolio or minimum vari-

ance portfolio at a given expected return level. The (mean-variance) fron-

tier is the set of frontier portfolios of all levels of expected returns. The

frontier can also be defined as the set of portfolios that maximize or mini-

mize the expected return for all levels of total risk. The problem of maxi-

mizing expected returns reads:

Problem 2.2 (Maximize Expected Return Given Total Portfolio Risk).

Determine the optimal portfolio composition such that the expected return

is maximized for a given level of total risk:

objective: max
xP

μP

constraints: x′
PV xP = σ2

P

x′
P1 = 1 .
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Table 2.1: Classical Portfolio Selection Problems

Portfolio selection problem Objective function Solution and expected

and author and constraints portfolio return

Minimize variance min
xP

x′P V xP xP = V −1(μ 1)A−1

(
μP

1

)
given expected return μ′xP = μP proposition 2.3

Markowitz (1952) x′P1 = 1

Maximize expected return max
xP

x′P μ μP = μMVP +
√

d
√

σ2
P − σ2

MVP

given variance x′P V xP = σ2
P equation (2.12)

x′P1 = 1

Safety first approach min
xP

P (RP < τ) μP = a−bτ
b−cτ

Roy (1952) x′P1 = 1 proposition 2.6

Maximize threshold return max
xP

τ τ = μMVP − √
m2

p − d σMVP

Kataoka (1963) P (RP < τ) = p μP = μMVP + dσMVP√
m2

p−d

proposition 2.8

Maximize expected return max
xP

μP proposition 2.10

given a threshold return P (RP < τ) = p

and a shortfall probability

Telser (1955)

This table provides an overview on classical portfolio selection problems

and their solutions. Since the optimal portfolio of each problem is on the

mean-variance frontier, the optimal composition can be calculated with equa-

tion (2.1) below and the expected portfolio return given in the third column

of the table.
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There are many variants of these problems with further restrictions. A

typical restriction in practical portfolio construction is the exclusion of

shortsale, xi ≥ 0, i = 1, . . . , n, since shortsale of assets is expensive and

often prohibited by financial regulation rules or portfolio policies. Since

closed form solutions often only exist in case of absence of complex restric-

tions, we do not consider such restrictions in the following. Other classical

objective functions for portfolio selection are e.g. minimizing the probabil-

ity of falling short a target return or maximizing the target return given a

shortfall probability. The solution of these problems are also on the efficient

frontier. Table 2.1 provides an overview on classical portfolio optimization

problems and their solutions that are derived in the subsequent sections.

2.2 The Efficient Frontier without a

Riskless Asset

This section derives the solution for the classical portfolio selection prob-

lems 2.1 and 2.2 and introduces the information matrix. Most results are

due to Markowitz (1952), Merton (1972), and Roll (1977). A readable

introduction can be found in Trautmann (2007, chapter 5).

The (efficient set) information matrix A simplifies the representation of

optimal portfolios. It is defined by

A ≡
(

a b

b c

)
≡ (μ 1)′V −1(μ 1) ,

where notation is introduced for the n-dimensional vector 1 ≡ (1 1 . . . 1)′

and for the elements a ≡ μ′V −1μ, b ≡ 1′V −1μ, and c ≡ 1′V −11 of the

information matrix.1

1Please note that we use the vector notation of Roll (1977, appendix) which is slightly different from the

one in Merton (1972). Readers used to Merton’s notation know the elements of the information matrix

as A=̂b, B=̂a, and C=̂c.
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Proposition 2.3 (Frontier Portfolios).

The solution of the variance minimization problem 2.1 for given expected

return μP is a frontier portfolio P with composition

xP = V −1(μ 1)A−1

(
μP

1

)
(2.1)

and variance

σ2
P = (μP 1)A−1

(
μP

1

)
=

a − 2bμP + cμ2
P

ac − b2 . (2.2)

Proof. We first show that the information matrix is regular. The rank of

the vector (μ 1) is two according to assumption 2.2. Then, the vector

u = (μ 1)v is different from zero for each v �= (0 0)′ and

v′A−1v = v′(μ 1)′V −1(μ 1)v = u′V −1u > 0 ,

since V and its inverse V −1 are positive definite. This equation is equiva-

lent to A being regular.

The chapter’s appendix discusses conditions for the optimal solution of

an optimization problem. Problem 2.1 can be solved with the method of

Lagrange multipliers. The Lagrange function reads

L(x,λ) = x′V x + λ1(μP − x′μ) + λ2(1 − x′1) .

Since V is positive definite, the optimal solution x∗ is unique, has minimum

variance at the given expected return level μP , and satisfies the conditions

∂L

∂x
(x∗, λ∗) = 2V x∗ − λ∗

1μ − λ∗
21 = 0 (2.3)

∂L

∂λ1
(x∗, λ∗) = μP − x∗′μ = 0 (2.4)

∂L

∂λ2
(x∗, λ∗) = 1 − x∗′1 = 0 . (2.5)
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Since V is regular, solving equation (2.3) for x∗ yields:

x∗ =
1

2
V −1(μ 1)

(
λ∗

1

λ∗
2

)
. (2.6)

Multiplying with (μ 1)′ results in:(
μ′

1′

)
x∗ =

1

2

(
μ′

1′

)
V −1(μ 1)

(
λ∗

1

λ∗
2

)
=

1

2
A

(
λ∗

1

λ∗
2

)
.

Since A is regular, multiplying with 2A−1 and using equations (2.4) and

(2.5) provides the optimal Lagrange multipliers

2A−1

(
μP

1

)
= 2A−1

(
μ′

1′

)
x∗ =

(
λ∗

1

λ∗
2

)
which yields the optimal composition with equation (2.6). The variance

follows directly from σ2
P = x∗′V x∗, equation (2.1), symmetry V ′ = V , and

the definition of the information matrix.

As a final remark, we note that the optimal Lagrange multipliers are(
λ∗

1

λ∗
2

)
= 2A−1

(
μP

1

)
=

2

ac − b2

(
c −b

−b a

) (
μP

1

)

=
2

a − b2

c

(
μP − b

c
a
c − b

cμP

)
and that the multiplier λ∗

1 can be seen as the marginal increment of variance

with respect to the expected return:
∂σ2

P

∂μP

(2.2)
= 2

a− b2

c

(
μP − b

c

)
= λ∗

1.

Reducing portfolio risk is a central topic of portfolio theory. The port-

folio with least variance of return is called the minimum variance portfo-

lio (MVP). The MVP has expected return, variance, and composition

μMVP =
b

c
(2.7)

σ2
MVP =

1

c
(2.8)

xMVP =
1

c
V −11
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which can be derived using the condition ∂σ2
P/∂μP = 0 and equations (2.2)

and (2.1). Rearranging equation (2.2) shows that all frontier portfolios

different from MVP have an identical ratio of squared relative return and

relative total risk

d ≡ (μP − μMVP)2

σ2
P − σ2

MVP
=

(
μP − b

c

)2

σ2
P − 1

c

= a − b2

c
(2.9)

with MVP as reference portfolio.

Rearranging this equation shows that frontier portfolios are located on a

hyperbola in (μ, σ)-space with center (μMVP, 0), as is also illustrated in

figure 2.1. The hyperbola equation reads

σ2
P

σ2
MVP

− (μP − μMVP)2

dσ2
MVP

= 1 (2.10)

with slope ±√
d of the asymptotes.

�
μP

μMVP = b
c

�

σPσMVP = 1√
c

asymptote

MVP �

frontier

portfolios

μMVP
+
√ d

√ σ
2
P
− σ

2
MVP

μMVP − √
d

√
σ 2
P − σ 2

MVP

portfolios of two assets

Figure 2.1: Frontier Portfolios are Located on a Hyperbola in (μ, σ)-Space
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Figure 2.2 illustrates that frontier portfolios have identical ratio d. Then,

the total risk of frontier portfolios simplifies to

σ2
P = σ2

MVP +
(μP − μMVP)2

d
. (2.11)

The expected return of a frontier portfolio with total risk σ2
P is

μP = μMVP ±
√

d
√

σ2
P − σ2

MVP , (2.12)

where the plus and the minus signs correspond to an efficient and to an

inefficient frontier portfolio, respectively.

�(μP − μMVP)2

�

σ2
P − σ2

MVP

frontier portfolios

portfolios of two assets

MVP �

d

Figure 2.2: Frontier Portfolios have Identical Ratio d = (μP−μMVP)2

σ2
P−σ2

MVP

Frontier portfolios with zero correlation and tangent portfolios are closely

related and also important in portfolio theory. The returns RP1
, RP2

of two

frontier portfolios P1 and P2 have covariance

σP1,P2
= (μP1

1)A−1

(
μP2

1

)
=

a − bμP1
− bμP2

+ cμP1
μP2

ac − b2 (2.13)
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which follows from σP1,P2
= x′

P1
V xP2

and equation (2.1). Two portfolios

P and Z are called orthogonal if the covariance of their returns vanishes:

σP,Z = 0. Given a frontier portfolio P with expected return μP , μP �= μMVP,

the expected return and variance of the orthogonal frontier portfolio follow

from equations (2.13) and (2.2):

μZ =
a − bμP

b − cμP
(2.14)

σ2
Z =

a − 2bμP + cμ2
P

(b − cμP )2 . (2.15)

Given a tangency point T on the hyperbola, a point P on the tangent

fulfills2

σT σP

σ2
MVP

− (μT − μMVP)(μP − μMVP)

d σ2
MVP

= 1 .

Since the point (μP , σP ) =
(

a−bμT

b−cμT
, 0

)
fulfills this equation, the tangency

equation can be written as

μP (σP ) =
a − bμT

b − cμT
+

μT − a−bμT

b−cμT

σT
σP =

a − bμT

b − cμT
− a − 2bμT + cμ2

T

(b − cμT )σT
σP .

This shows that the ordinate of the tangent coincides with the expected

return μZ of the orthogonal portfolio of T : μZ = a−bμT

b−cμT
. The construction

of tangents to hyperbolas in (μ, σ)-space provides a graphically intuitive

interpretation e.g. of determining uncorrelated frontier portfolios.

The following proposition as well as figure 2.3 clarify the economic meaning

of the elements of the information matrix.

2See e.g. Bronstein, Semendjajew, Musiol, and Mülig (1997, p. 185).
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Proposition 2.4 (Information Matrix).

The information matrix A is fully determined by the expected return and

variance of MVP and the slope ±√
d of the hyperbolas’ asymptotes. It

provides all necessary information for the relationship of variance and ex-

pected return of frontier portfolios. The elements of the information matrix

can be interpreted as follows:

• a is the square of the maximum mean-volatility ratio of a portfolio:

max
xP

μP

σP
=

√
a ,

which is attained by a frontier portfolio, say Q. Portfolio Q has

expected return μQ = a/b, variance σ2
Q = a/b2, and composition

xQ = V −1μ/b.

• b is the mean-variance ratio of the MVP as well as of portfolio Q:

μMVP

σ2
MVP

=
μQ

σ2
Q

= b .

• c is the inverse of the variance of MVP:

1

σ2
MVP

= c .

The information matrix A is positive definite, specifically

det(A) = ac − b2 > 0 .

Proof. Given the expected return and variance of MVP as well as the slope√
d, the elements of the information matrix are c = 1

σ2
MVP

, b = μMVP , and

a = d + b2

c . The proof of proposition 2.3 shows that A is regular which

implies ac − b2 > 0. A is positive definite, since det(A) = ac − b2 > 0 and

a = μ′V −1μ > 0 holds.

σ2
MVP
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Portfolio Q is defined as the portfolio with maximum mean-volatility ratio.

Therefore, it is the tangency portfolio of a tangent in (μ, σ)-space which

has an ordinate of zero. In other words, it is orthogonal to a frontier

portfolio with zero expected return. Using μZ = 0 and equations (2.14)

and (2.15) yields the expected return μQ = a/b and variance σ2
Q = a/b2.

The composition xQ follows from equation (2.1) and μQ = a/b. The other

ratios are calculated with equations (2.7) and (2.8).

�μP

b
c

a
b

0
0

�
σP

MVP

ZQ

Q

1√
c

√
a

b

−√
d

√
a

√
d

�μP

b
c

a
b

�
σ2

P

0
0

MVP

ZQ

Q

1
c

a
b2

b

Figure 2.3: Frontier Portfolios and the Elements of the Information

Matrix

The shifting strategy

s = xP2
− xP1

= V −1(μ 1)A−1

(
μP2

− μP1

0

)
(2.16)

reallocates portfolio weights from one frontier portfolio P1 to another fron-

tier portfolio P2. It only depends on the difference of expected returns,

but does not depend on the original portfolio composition. This implies
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the two-fund separation of frontier portfolios: Given two arbitrary fron-

tier portfolios P1 and P2 with μP1
�= μP2

, any frontier portfolio P3 can be

composed with these two portfolios. The composition is

xP3
=

μP3
− μP2

μP1
− μP2

xP1
+

μP1
− μP3

μP1
− μP2

xP2
,

where the condition μP3
= zμP1

+ (1 − z)μP2
implies the portion

z =
μP3

− μP2

μP1
− μP2

that is invested in P1. Finally, we want to mention that Cochrane (2005)

presents a two-fund separation of the frontier with special orthogonal port-

folios: Every frontier portfolio can be constructed by a portfolio with min-

imum second moment and its orthogonal portfolio. Their mean returns

are b/(c + ac − b2) = μMVP/(1 + d) and (1 + a)/b, respectively. Table 2.2

summarizes mean and variance of frontier portfolios with noteworthy prop-

erties.3

Portfolio risk can be decomposed into risk budgets contributed by each

asset. This helps investors to identify the sources of risks and to judge

whether a portfolio is diversified or not. Since total portfolio risk can be

represented as a sum of the single weighted asset’s covariance with the

portfolio, σ2
P = x′

PV xP =
∑N

i=1 xi(V xP )i =
∑N

i=1 xiσi,P , the risk budget

of the ith asset can be defined as the asset’s portion of contribution to

total portfolio risk:4

RB i ≡ xi
σi,P

σ2
P

.

3The portfolio with maximum mean-variance ratio is derived in proposition 2.13 in the chapter’s appendix.
4An alternative approach is given by Sharpe (2002, p. 80) who first defines the marginal risk of as-

set i as MRi ≡ ∂σ2
P

∂xi
= 2σi,P . Since the weighted marginal risks add to twice the total risk,∑N

i=1 xiMRi =
∑N

i=1 xiσi,P = 2σ2
P , he defines the risk budget of asset i by RB i ≡ xiMRi

2σ2
P

= xiσi,P

σ2
P

.

Scherer (2004, p. 19) uses the volatility instead of total risk to define the marginal contribution to

risk as MCTRi ≡ ∂σP

∂xi
= σi,P

σP
. Since the weighted MCTRs add up to the portfolio volatility,∑N

i=1 xiMCTRi =
∑N

i=1 xiσi,P /σP = σP , he refers to the term xiσi,P /σ2
P as percentage contribution

to risk (PCTR).
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Table 2.2: Characteristic Portfolios on the Mean-Variance Frontier

expected return and

Portfolio variance of return portfolio property

Minimum variance portfolio μMVP = b
c

mean-variance ratio μMVP

σ2
MVP

= b

MVP σ2
MVP = 1

c

Portfolio with maximum μQ = a
b

mean-volatility ratio
μQ

σQ
=

√
a

mean-volatility ratio σ2
Q = a

b2
mean-variance ratio

μQ

σ2
Q

= b

Portfolio with maximum μP =
√

a√
c

mean-variance ratio

mean-variance ratio σ2
P = 2a

ac+b
√

ac
μP

σ2
P

= 1
2
(
√

ac + b)

Portfolio with minimum μP = b
c+ac−b2

second moment σ2
P = c+(2+a)(ac−b2)

(c+ac−b2)2

Orthogonal frontier portfolio μP = a−bμZ

b−cμZ
σP,Z = 0

of a frontier portfolio Z σ2
P =

a−2bμZ+cμ2
Z

(b−cμZ)2

This table provides the expected return and variance of some frontier portfolios

with special properties.

The risk budgets add up to one:
∑N

i=1 RB i = 1. If P is a frontier portfolio,

the risk budget of asset i is

RB i = xi
σi,P

σ2
P

=
xi

σ2
P

(V xP )i

(2.1)
=

xi

σ2
P

((
μ 1

)
A−1

(
μP

1

))
i

= xi
a − bμi − bμP + cμiμP

a − 2bμP + cμ2
P

,

where (·)i denotes the ith entry of a vector. The results of mean-variance

optimization can be interpreted as implied contributions to expected return

and implied risk budgets.5 As part of the monitoring and revising process of

asset management, implied risk budgets can be compared with realized risk

proportions after market movements, manager actions, and after updated

estimates of return and risk.
5See Scherer (2004, p. 20) and Sharpe (2002, p. 80) for reverse optimization and risk analysis based on

implied risk budgets.
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2.3 Safety First Approach

Critics on volatility as risk measure point out that it measures the spread

of the return below as well as above the mean. Many investors rather

fear only returns of their portfolio that are below mean or below a target

return. This downside risk or (target) shortfall risk can be measured with

the probability P (RP < τ) of the portfolio return RP falling below a target

return τ .

Assumption 2.3’ (Roy Criterion).

The investor chooses portfolios based on the Roy criterion: Portfolio P1 is

preferred to portfolio P2 according to the Roy criterion if and only if the

probability of falling short a given target return τ is smaller for P1 than

for P2, i.e. if P (RP1
< τ) < P (RP2

< τ).

Roy (1952) introduced the objective of minimizing the shortfall probability

as the safety first approach to portfolio selection and derives the optimal

portfolio for normally distributed returns. The following assumption is

needed for the results in this and the next section.

Assumption 2.4 (Normally Distributed Asset Returns).

The risky asset returns are normally distributed.

Problem 2.5 (Safety First).

Determine the optimal portfolio such that the probability of falling short

a target return τ , τ < μMVP, is minimized:

objective: min
xP

P (RP < τ)

constraint: x′
P1 = 1 .
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For a normally distributed portfolio return RP , the probability of falling

short a target return τ can be calculated by

P (RP < τ) = P

(
RP − μP

σP
<

τ − μP

σP

)
= Φ

(
τ − μP

σP

)
= 1 − Φ

(
μP − τ

σP

)
, (2.17)

where Φ(·) denotes the standard normal cumulative distribution function.

Since Φ(·) is increasing, minimizing the target shortfall probability is equiv-

alent to maximizing the ratio (μP − τ)/σP of target excess return and

standard deviation of portfolio return:

min P (RP < τ) ⇐⇒ max
μP − τ

σP
. (2.18)

�μP

threshold

return τ
�

σP

P ∗a−bτ
b−cτ

√
a−2bτ+cτ2

b−cτ

shortfall

lines

Figure 2.4: Roy’s Problem: Minimizing the Threshold Shortfall

Probability
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Portfolios with equal ratio (μP − τ)/σP have an identical target shortfall

probability and are located on a straight line in (μ, σ)-space. Figure 2.4

illustrates these so called (target) shortfall lines .

Proposition 2.6 (Frontier Portfolio with Minimum Shortfall Probability).

Given a return target τ , τ < μMVP, the efficient frontier portfolio P ∗ with

expected return

μP ∗ =
a − bτ

b − cτ
(2.19)

and variance

σ2
P ∗ =

a − 2bτ + cτ 2

(b − cτ)2

=
1

c
+

d

(b − cτ)2

minimizes the target shortfall probability of the safety first problem 2.5.

Proof. Relation (2.18) shows that minimizing the shortfall probability is

equivalent to maximizing the slope of the shortfall line that goes through

τ and P in (μ, σ)-space. The tangent on the hyperbola has maximum

slope with a tangency portfolio P ∗ as admissible solution. Therefore, the

tangency portfolio P ∗ on the hyperbola solves problem 2.5. P ∗ is a fron-

tier portfolio with expected return μP ∗ = (a − bτ)/(b − cτ) according to

equation (2.14) and its variance can be derived using equation (2.11).

Equation (2.18) shows that the safety first optimization is related to port-

folio optimization with respect to the performance measure Sharpe ratio:

If the threshold return τ is chosen equal to the return rf of the riskless

asset, minimizing the shortfall probability is equivalent to maximizing the

Sharpe ratio (μP − rf)/σP of the portfolio. The portfolio with maximum

Sharpe ratio has expected return (a− brf)/(b− crf). This result also holds

without the normal distribution assumption 2.4.
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2.4 Value at Risk Based Portfolio Selection

Risk measures such as Value at Risk (VaR) have gained much attention

recently due to several reasons. With the downturn of equity markets in the

year 2001, investors have become more aware of potential downside risks

and of the need of portfolio risk measurement. VaR is a standard measure

for the determination of the economical capital that banks have to hold

to prevent insolvency. The VaR of a portfolio is the estimated maximum

loss which cannot be exceeded within a set holding period at a certain

confidence level.6 If ΔV denotes the change in portfolio value within the

time period and the confidence level is 99%, then P (ΔV < −VaR) = 0.01

holds. This section shows how to compose a portfolio with minimum VaR

and how to maximize the expected return when a VaR limit is given for

the case of normally distributed returns.

While the above definition of VaR is used for measuring possible abso-

lute losses, it is more common in portfolio theory to measure losses in

relative terms based on portfolio returns. The VaR of a portfolio can be

represented by the (disaster or VaR) threshold return τ that the portfolio

return possibly falls short. Analogously to the confidence limits, standard

shortfall probabilities are P (RP < τ) = 0.01 or P (RP < τ) = 0.05. The

relation between current portfolio value V , VaR and threshold return is

τ = −VaR/V . Kataoka (1963) proposes to maximize the threshold re-

turn subject to a given acceptable probability of disaster. Maximizing the

threshold return τ for a given shortfall probability p is equivalent to mini-

mizing the VaR at the confidence level 1−p. In practice of risk controlling

divisions, VaR is usually calculated ex post based on realized portfolio re-

turns. Since we derive optimal portfolios based on ex ante estimates of

expected returns and covariances, we continue with the term of threshold

6The concept of VaR was introduced by Baumol (1963) as an expected gain-confidence limit criterion for

portfolio selection.



© Verlag Dr. Kovač 2008

2.4. Value at Risk Based Portfolio Selection 23

return. In the following, we derive the optimal portfolio for an investor

who accepts a certain level of shortfall probability and wants to maximize

the threshold return.

Assumption 2.3” (Kataoka Criterion).

The investor chooses portfolios based on the Kataoka criterion: Portfolio

P1 is preferred to portfolio P2 according to the Kataoka criterion if and

only if the maximum possible threshold return of P1 is greater than the

one of P2 for a prespecified shortfall probability.

Problem 2.7 (Minimize VaR).

Determine the optimal portfolio such that the threshold return is maxi-

mized for a given shortfall probability:

objective: max
xP

τ

constraint: P (RP < τ) = p .

Rearranging equation (2.17) shows that portfolios with normally distributed

returns and identical shortfall probability p = P (RP < τ) = 1 − Φ
(

μP−τ
σP

)
are located on a shortfall line with equation μ(σP ) = τ + mpσP and slope

mp ≡ Φ−1(1 − p) = (μP − τ)/σP . Alternatively, a portfolio’s threshold

return for a given shortfall probability p is τ = μP −mpσP , where mp is the

(1−p)-quantile Φ−1(1−p) of the standard normal distribution. Figure 2.5

shows increasing thresholds and the corresponding shortfall lines, i.e. port-

folios with identical shortfall probability. For a given shortfall probability,

the maximum threshold is achieved with a tangency portfolio P on the ef-

ficient frontier.7 A tangency portfolio exists as a solution if the slope of the

shortfall line is greater than the slope of the hyperbola’s upper asymptote,

mp >
√

d. This is equivalent to the condition that the shortfall probability

7Kalin and Zagst (1999, p. 113) refer to portfolio P as the best threshold portfolio. They also investi-

gate distributions for which mean-variance optimization and shortfall risk based portfolio optimization

coincide.
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satisfies the upper bound p < Φ−1
(
−√

d
)
.

�μP

τ ∗ = −VaR∗
V

�

σP

Pa−bτ∗
b−cτ∗

shortfall lines

Figure 2.5: Kataoka’s Problem: Maximizing the Threshold Return

for a Given Shortfall Probability

Proposition 2.8 (Minimum VaR).

Given a shortfall probability p with p < Φ
(
−√

d
)
, the maximum threshold

return is

τ ∗ = μMVP −
√

m2
p − d σMVP , (2.20)

where mp ≡ Φ−1(1 − p). It is attained with an efficient portfolio with

expected return

μP =
a − bτ ∗

b − cτ ∗ = μMVP +
dσMVP√
m2

p − d

and variance of return

σ2
P =

m2
p

m2
p − d

σ2
MVP .
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Proof. If the threshold return is maximized for a given shortfall probabil-

ity, the optimal portfolio is an efficient frontier portfolio. Rearranging the

shortfall line equation μP = τ + mp σP for the threshold and using equa-

tion (2.2), the threshold return τ can be represented as a function of the

expected return of the frontier portfolio

τ = μP − mpσP = μP − mp

√
a − 2bμP + cμ2

P√
ac − b2

.

The first order condition ∂τ/∂μP = 0 yields the expected return of the

frontier portfolio that corresponds to the maximum threshold. Its variance

of return can be calculated with equation (2.2).

Finally, let’s consider the case that both threshold return and shortfall

probability are fixed. A typical example is a company that wants to keep

its rating constant. The rating reflects its probability for an insolvency and

default might be triggered by a return below a disaster threshold return. If

a certain rating or a default probability is accepted, an investor’s objective

might be maximizing the expected return.

Assumption 2.3”’ (Telser Criterion).

The investor chooses portfolios based on the Telser criterion: Portfolio P1

is preferred to portfolio P2 according to the Telser criterion if and only if

both portfolios have at most a prespecified shortfall probability for a given

threshold return and the expected return of P1 is greater than the expected

return of P2.

Problem 2.9 (Maximize Expected Return Given Shortfall Probability).

Determine the optimal portfolio such that the expected return is maximized

for a given threshold and threshold shortfall probability:

objective: max
xP

μP (2.21)

constraint: P (RP < τ) ≤ p .
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�μP

τ = −VaR
V

�
σP

admissible
portfolios

�
P ∗

shortfall line

Figure 2.6: Telser’s Problem: Maximizing the Expected Return

Given the Threshold Shortfall Probability

Figure 2.6 illustrates the set of admissible portfolios as well as the optimal

portfolio with maximum expected return.

Proposition 2.10.

A solution of problem 2.9 exists if p ≥ Φ
(−√

a − 2bτ + cτ 2
)
. The opti-

mal portfolio of problem 2.9 is an efficient frontier portfolio with expected

return and volatility

μP ∗ =
bm2

p − (ac − b2)τ + mp

(
(ac − b2)(a − 2bτ + cτ 2 − m2

p)
) 1

2

cm2
p − ac + b2

σP ∗ =
(b − cτ)mp +

(
(ac − b2)(a − 2bτ + cτ 2 − m2

p)
) 1

2

cm2
p − ac + b2 .
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Proof. Let Tτ denote the tangency portfolio with respect to τ . Tτ has the

least shortfall probability according to proposition 2.6. The admissible set

of portfolios for condition P (RP < τ) is nonempty if Tτ is admissible, i.e.

if

p ≥ P (RTτ
< τ) = P

(
RTτ

− E[RTτ
]

σTτ

<
τ − E[RTτ

]

σTτ

)
= Φ

(
−

√
a − 2bτ + cτ 2

)
,

where μTτ
and σ2

Tτ
are given by equations (2.14) and (2.15).

The optimal portfolio P ∗ of problem 2.9 is located at the intersection of

the efficient frontier and the shortfall line. The expected portfolio returns

and volatilities of the points of intersection are

μP =
bm2

p − (ac − b2)τ ± mp

(
(ac − b2)(a − 2bτ + cτ 2 − m2

p)
) 1

2

cm2
p − ac + b2

σP =
(b − cτ)mp ±

(
(ac − b2)(a − 2bτ + cτ 2 − m2

p)
) 1

2

cm2
p − ac + b2 .

They are derived from the condition mp ≡ Φ−1(1 − p) = (μP − τ)/σP

given by equation (2.17) after using equations (2.11) and (2.12). Given

P ∗ �= Tτ , there are two points of intersection and the frontier portfolio

with the highest expected return is the optimal solution.
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2.5 The Efficient Frontier Given a Riskless

Asset

This section derives the relationship of return and total risk of efficient

portfolios when a riskless investment is available and the investor chooses

portfolios according to the mean-variance criterion in assumption 2.3. In

order to include a riskless asset to the asset universe, assumption 2.2 is to

be replaced by

Assumption 2.2’ (Riskless and Risky Assets).

There are n risky assets and one riskless asset with rate rf that are traded

in the market. The risky asset returns Ri, i = 1, . . . , n, have expected

return μ = (μ1, . . . , μn)
′ and positive definite covariance matrix V . There

are at least two risky assets with differing expected returns.

The combination of a portfolio of risky assets with a riskless asset yields

a linear relationship of expected return and portfolio volatility. Let xrf

denote the proportion of wealth that is invested in the riskless investment.

Then, the expected return and volatility of a portfolio P consisting of the

riskless asset and a portfolio S of risky assets read

μP = xrf rf + (1 − xrf )μS = μS + xrf (rf − μS) (2.22)

σP =
(
x2

rf
· 0 + (1 − xrf )

2σ2
S

) 1
2

= |1 − xrf |σS . (2.23)

Solving equation (2.23) for xrf = 1 ∓ σP

σS
and inserting in equation (2.22)

yields the expected return

μP =

(
1 ∓ σP

σS

)
rf ± σP

σS
μS = rf ± μS − rf

σS
σP

which is maximized if the Sharpe ratio
μS−rf

σS
of portfolio S is maximized.8

8Sharpe (1966, p. 123) introduced this performance measure as reward-to-variability ratio.
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T

Figure 2.7: Frontier Portfolios Given a Riskless Asset

The maximum is attained if the riskless asset is combined with the corre-

sponding tangency portfolio T :

μP = rf +
μT − rf

σT
σP (2.24)

= rf +
√

a − 2brf + cr2
f σP ,

where the expected portfolio return μT =
a−brf
b−crf

and variance of return

σ2
T =

a−2brf+cr2
f

(b−crf )2 are given by equations (2.14) and (2.15). The Sharpe ratio

of an efficient portfolio is
μP−rf

σP
=

μT−rf
σT

=
√

a − 2brf + cr2
f . The efficient

frontier is illustrated in figure 2.7.

As a result, a two-fund separation of the efficient frontier also holds in

the presence of a riskless investment: Every efficient portfolio can be con-

structed with the riskless asset and the tangency portfolio. The two-step

procedure of composing an individual efficient portfolio is known as Tobin-

separation: Tobin (1958) proposes to determine foremost the tangency

portfolio that corresponds to the riskless investment. Second, the tan-

gency portfolio and riskless investment are combined in order to fit the

individual investor’s risk-return preference.
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2.6 Example: Global Asset Allocation

This section illustrates the models presented above with an example of

global asset allocation. We consider the case of a global asset manager

investing capital to the following six major asset classes: Canadian, French,

German, Japanese, U.K., and U.S. equity market. We assume that he is

able to invest directly in national indices and estimates expected returns

and covariances based on historic returns. The historic data set consists of

monthly returns of MSCI indices during the time period January 1970 to

December 2006.

National equity indices data and riskfree rates were compiled on January

12, 2007 from two sources: Data on national indices is retrieved from MSCI.

Total return indices (Gross Index) are used in order to include price per-

formance as well as income from dividend payments. The income from

dividends is reinvested in the index and contributes to the total index

performance. The chosen reinvestment methodology is “gross daily total

return” which approximates the maximum possible dividend reinvestment

without including tax credits nor withholding tax on dividends. All indices

are USD denominated. In 37 years, 444 monthly returns of each index are

observed during the time period January 1970 to December 2006. Fig-

ure 2.8 illustrates the gross indices of the six countries. Returns of the

3-month US treasury bill are used as riskless rates. The annualized means,

standard deviations, covariances, and correlations are given in table 2.3.
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Figure 2.8: MSCI Gross Indices USD Denominated, Log Scale

Source: MSCI. The MSCI data contained herein is the property of Morgan Stanley Capital International

Inc. (MSCI). MSCI, its affiliates and information providers make no warranties with respect to any such

data. The MSCI data contained herein is used under license and may not be further used, distributed or

disseminated without the express written consent of MSCI.
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Table 2.3: Annualized Mean, Standard Deviation, Covariance, and

Correlation of Monthly Returns of 6 Indices, January 1970 – December

2006

mean standard covariance

return deviation Canada France Germany Japan U.K. U.S.

Canada 0.1227 0.1904 0.03590 0.02024 0.01610 0.01379 0.02185 0.02067

France 0.1404 0.2228 0.02024 0.04933 0.03102 0.01934 0.02834 0.01668

Germany 0.1305 0.2118 0.01610 0.03102 0.04458 0.01670 0.02198 0.01481

Japan 0.1331 0.2219 0.01379 0.01934 0.01670 0.04894 0.01818 0.01022

U.K. 0.1393 0.2248 0.02185 0.02834 0.02198 0.01818 0.05028 0.01799

U.S. 0.1149 0.1524 0.02067 0.01668 0.01481 0.01022 0.01799 0.02305

mean standard correlation

return deviation Canada France Germany Japan U.K. U.S.

Canada 0.1227 0.1904 1.0000 0.4809 0.4025 0.3291 0.5143 0.7185

France 0.1404 0.2228 0.4809 1.0000 0.6614 0.3936 0.5691 0.4947

Germany 0.1305 0.2118 0.4025 0.6614 1.0000 0.3576 0.4642 0.4619

Japan 0.1331 0.2219 0.3291 0.3936 0.3576 1.0000 0.3665 0.3043

U.K. 0.1393 0.2248 0.5143 0.5691 0.4642 0.3665 1.0000 0.5283

U.S. 0.1149 0.1524 0.7185 0.4947 0.4619 0.3043 0.5283 1.0000
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Figure 2.9 plots the 6 country indices, some portfolios of two indices as

well as the frontier in (μ, σ)-space. The figure on the right illustrates the

asymptotes of the hyperbola as well as the frontier portfolios MVP and Q.

Given the annualized mean μ and covariance matrix V from table 2.3, the

information matrix for frontier portfolios is

A =

(
0.7885 6.3113

6.3113 52.0737

)

and d = a − b2/c = 0.0236.
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Figure 2.9: Six Country Indices in (μ, σ)-Space: (a) Frontier Portfolios

and Portfolios of Two Indices; (b) The Maximum Return-Volatility

Ratio
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The minimum variance portfolio has expected return μMVP = b/c = 0.1212

and volatility σMVP = 1/
√

c = 0.1386. Portfolio Q has maximum mean-

volatility ratio
√

a = 0.8880. The mean-variance ratio of portfolios MVP

and Q is μMVP/σ2
MVP = μQ/σ2

MVP = b = 6.3113. The slope of the asymp-

totes of the hyperbola is
√

d = 0.1535.

An efficient frontier portfolio with expected return μP has composition

xP = V −1(μ 1)A−1

(
μP

1

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5.0056 −0.5723

18.4966 −2.2500

−1.5960 0.3265

4.8904 −0.3880

17.4278 −2.0937

−44.2244 5.9775

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(

μP

1

)
,

see equation (2.1). Table 2.4 provides the compositions of the portfolios

MVP and Q. It also shows the optimal portfolio selection for the prob-

lems 2.5, 2.7 2.9 when, respectively, a threshold return τ =−0.20, the

shortfall probability P (RP < τ) = 0.05, or when both threshold return

τ = −0.20 and shortfall probability P (RP < −0.20) = 0.05 are given. Re-

allocating assets from one frontier portfolio to another frontier portfolio and

increasing the expected return about 1% is achieved with the self-financing

shifting strategy s = (0.0501 0.1850 −0.0160 0.0489 0.1743 −0.4422)′.

, and
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Table 2.4: Optimal Portfolio Selection with 6 Country Indices

MVP Q P1 P2 P3

mean return μP 0.1212 0.1249 0.1226 0.1232 0.1454

standard deviation σP 0.1386 0.1407 0.1389 0.1392 0.2100

composition xP :

Canada 0.0344 0.0531 0.0414 0.0444 0.1556

France −0.0082 0.0608 0.0178 0.0286 0.4397

Germany 0.1331 0.1272 0.1309 0.1299 0.0945

Japan 0.2047 0.2229 0.2116 0.2144 0.3231

U.K. 0.0185 0.0836 0.0431 0.0533 0.4405

U.S. 0.6175 0.4525 0.5552 0.5294 −0.4534

P (RP < −0.2000) 0.01023 0.01046 0.01009 0.01012 0.05000

P (RP < -0.1057 ) 0.05074 0.05055 0.05006 0.05000 0.11585

This table shows the mean return, standard deviation, composition, and

the shortfall probability of mean-variance efficient frontier portfolios. The

portfolios are the minimum variance portfolio MVP, portfolio Q with maxi-

mum mean-volatility ratio, and the solutions P1, P2, P3 of problems 2.5, 2.7,

and 2.9. The solution P1 of Roy’s safety first problem 2.5 is calculated

for the threshold return τ = −0.20. It has minimum shortfall prob-

ability P (RP1
< −0.20) = 0.01009. For a given shortfall probability

P (RP2
< τ ∗) = 0.05, portfolio P2 solves Kataoka’s problem 2.7 with max-

imum threshold τ ∗ = −0.1057. For a threshold return τ = −0.20 and a

given shortfall probability P (RP3
< −0.20) = 0.05, the optimal portfolio

P3 of the Telser problem 2.9 has maximum expected return μP3
= 0.1454.
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Appendix

This appendix recalls the Karush-Kuhn-Tucker conditions. We also derive

the expected return and variance of the portfolio with maximum mean-

variance ratio.

We first consider an optimization problem of the following form:

Problem 2.11 (Convex Problem).

Let f and g = (g1, . . . , gn)
′ be differentiable convex functions and let

h = (h1, . . . , hm)′ be an affine function. Then, find the optimal x∗ such

that f is minimized under constraints:

objective: min
x

f(x)

constraints: g(x) ≤ 0

h(x) = 0 .

The Karush-Kuhn-Tucker conditions are necessary conditions for the op-

timality of a solution of the convex problem. They appeared first in

Karush’s (1939) unpublished master’s thesis and were published in Kuhn

and Tucker (1950). The following condition ensures that a solution is non-

degenerate in the sense that it does not only depend on the constraints but

also on the properties of the function f : There exists a point x such that

gi(x) < 0 for all i = 1, . . . , n (Slater’s constraint qualification).

Proposition 2.12 (Karush-Kuhn-Tucker).

Let Slater’s constraint qualification be satisfied. The convex problem 2.11

has solution x∗ if and only if there exist constants u = (u1, . . . , un)
′,

v = (v1, . . . , vm)′ such that the Karush-Kuhn-Tucker (KKT) conditions
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hold:
∂f
∂x(x∗) +

∑n
i=1 ui

∂gi

∂x (x∗) +
∑m

j=1 vj
∂hj

∂x (x∗) = 0 (optimality condition)

g(x∗) ≤ 0 (feasibility condition)

h(x∗) = 0 (feasibility condition)

i = 1, . . . , n : uigi(x
∗) = 0 (complementary

slackness condition)

u ≥ 0 (non-negativity cond.) .

Proof. See e.g. Jarre and Stoer (2004, pp. 229–233).

The Karush-Kuhn-Tucker conditions generalize the method of Lagrange

multipliers : Given the absence of inequality constraints g(x) ≤ 0, the prob-

lem 2.11 has solution x∗ if and only if there exist constants v = (v1, . . . , vm)′

such that ∂L
∂x(x∗, v) = 0 and h(x∗) = 0 hold where the Lagrange function

is defined by L(x,v) ≡ f(x) +
∑m

j=1 vjh(x).

The following proposition derives the portfolio with maximum mean-variance

ratio that is mentioned in table 2.2.

Proposition 2.13.

The maximum of the ratio of expected return and variance, μP/σ2
P , is

(
√

ac + b)/2. It is achieved with an efficient frontier portfolio P with

expected return μP =
√

a/c and variance of return σ2
P = 2

√
a

c
√

a+b
√

c
.

Proof. The first order condition for the extremum

∂ μP

σ2
P

∂μP
=

(ac − b2)(a − cμ2
P )

(a − 2bμP + cμ2
P )2 = 0

has solutions μP = ±
√

a√
c
, σ2

P

(2.2)
=

2a∓2b
√

a
c

ac−b2 = 2
√

a
c
√

a±b
√

c
. The maximum is

obtained with μP =
√

a/c and σ2
P = 2

√
a/(c

√
a+b

√
c), because the second

derivative

∂2 μP

σ2
P

∂μ2
P

(√
a√
c

)
=

2(ac − b2)(2ab − 3acμP + c2μ3
P )

(a − 2bμP + cμ2
P )3 =

a(ac − b2)(b −√
ac)

2(a − b
√

a
c )

3
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is negative due to ac > b2. The frontier portfolio is efficient, since ac > b2

is equivalent to
√

a/
√

c > b/c which shows that μP > μMVP.
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Chapter 3

Benchmark-Relative

Portfolio Selection

A standard approach to assess a portfolio manager’s success in portfolio

management is to measure the portfolio performance relative to a bench-

mark portfolio. Given portfolio and benchmark returns RP and RB, the

difference of their returns RP −RB is a standard measure of relative perfor-

mance. The expected value of this return difference is called active return,

benchmark excess return, or gain, and its volatility is called active risk or

tracking error . Tracking error volatility indicates how close the portfolio

tracks a benchmark. Portfolio managers compete in improving portfolio

returns. Performance based salaries provide an incentive to managers to

increase the active return by increasing active risk. Therefore, active risk is

usually restricted by constraints on tracking error and partly on portfolio

beta and total risk in practice of active fund management.

This chapter derives closed form solutions when portfolios are composed

relative to a benchmark portfolio. Section 3.1 recalls the benchmark-

relative portfolio selection when the tracking error is minimized given an

expected excess return as well as when the excess return is maximized un-

der a tracking error constraint. The portfolio selection with an additional
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constraint on portfolio beta is discussed in section 3.2. Section 3.3 shows

how to optimally constrain the tracking error and beta simultaneously such

that the portfolio manager composes mean-variance efficient portfolios.

3.1 Constraint on Tracking Error

Active portfolio management is typically restricted in the extend of devia-

tions from a strategic benchmark. This section studies the portfolios selec-

tion of managers who maximize benchmark excess return given a tracking

error constraint. We show that this problem is related to Roll’s (1992)

problem of minimizing the tracking error for a given expected benchmark

excess return.

Whenever a portfolio manager deviates from the composition of the bench-

mark portfolio, two aspects are of interest: Active risk and active return,

or in other words, tracking error and excess return. Given the shifting

strategy s ≡ xP −xB that shifts the benchmark allocation xB to an active

portfolio allocation xP = xB + s, the expected benchmark excess return is

G ≡ μP − μB = μ′xP − μ′xB = μ′s and the tracking error is σ2
s ≡ s′V s.

The shifting strategy is denoted with s instead of x to stress that it is self

financing: s′1 =
∑n

i=1 si = 0. Roll (1992) calls s the alteration vector. In

the following, we derive optimal solutions for the shifting strategy.

Given the standard assumptions 2.1 (frictionless market) and 2.2 (risky as-

set returns), we derive the optimal portfolio selection of a portfolio manager

with one of the following objectives:

Assumption 3.1 (TEV Criterion).

The agent minimizes the tracking error for a given expected benchmark

excess return.
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Assumption 3.1’ (Maximize Excess Return).

The agent maximizes the expected benchmark excess return under given

risk constraints.

The corresponding portfolio selection problems are called TEV problem

due to the relevance of the tracking error volatility.

Problem 3.1 (TEV Problem).

Given a benchmark portfolio B with μB > μMVP and an expected excess

return G with G ≥ 0, determine the shifting strategy such that the tracking

error is minimized. Alternatively, if the tracking error is given, determine

a shifting strategy such that the expected excess return is maximized:

(1) objective: min
s

σ2
s (2) objective: max

s
s′μ

constraints: s′μ = G constraints: s′V s = σ2
s

s′1 = 0 s′1 = 0 .

Roll (1992) shows that minimizing tracking error as is specified in TEV

problem 3.1(1) does not produce better managed portfolios, since the ac-

tive portfolio is as inefficient as the benchmark. So, minimizing tracking

error should not be a primary aim in portfolio selection. However, since

tracking error restrictions are often used as tactical or active risk bud-

gets and performance of portfolio managers is often measured based on

benchmark excess returns, the second type of TEV problem 3.1(2) is im-

portant in practice of active portfolio management. Jorion (2003) shows

that TEV-constrained portfolios are located on an ellipse in (μ, σ2)-space.

Figure 3.1 illustrates TEV portfolios with identical tracking error in (μ, σ)-

space and plots the location of portfolios with maximum benchmark ex-

cess return given a tracking error constraint. The following proposition

presents the solution of the TEV problem. It shows that Roll’s (1992) and

Jorion’s (2003) solution of the TEV problems 3.1(1) and 3.1(2) coincide if

the benchmark excess return and the tracking error constraint of the two
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TEV problems are chosen specifically.

�μP

�

σP

B

frontier portfolios TEV portfolios
with maximum
excess return

portfolios
with identical
tracking error

�
�

�

Figure 3.1: Iso-Tracking Error Curves and TEV Portfolios

Proposition 3.2 (TEV Portfolio).

For G =
√

d σs, the solutions of both TEV problems 3.1(1) and 3.1(2)

coincide. The solution of the TEV problem is called TEV portfolio and is

given by xP = xB + s with optimal shifting strategy

s = V −1(μ 1)A−1

(
G

0

)
=

1√
d
V −1 (μ − μMVP1) σs . (3.1)

The shifting strategy s is independent of the benchmark. The excess return

s′μ is linear in tracking error volatility

s′μ =
√

d σs , (3.2)

which implies that the information ratio of the optimal shifting strategy is

independent of the tracking error: IR ≡ s′μ/σs =
√

d. The TEV portfolio

has expected return μP = μB +
√

d σs and variance

σ2
P = σ2

B +
2√
d
(μB − μMVP)σs + σ2

s . (3.3)
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Proof. Roll (1992, equations A-1, A-2) provides the solution of the optimal

shifting strategy s = V −1(μ 1)A−1 (G 0)′. It can be derived analogously

to the frontier portfolio composition xP in the proof of proposition 2.3 with

xP and the sum of portfolio weights, 1, replaced by s and 0, respectively.

Furthermore, we have

A−1

(
G

0

)
=

1

det A

(
c −b

−b a

) (
G

0

)
=

1

ac − b2

(
cG

−bG

)

=
1

d

(
G

−b
cG

)
.

For G = max μ′s =
√

dσs, Roll’s and Jorion’s (2003, equation B3) solution

coincide:

s = V −1(μ 1)A−1

(
G

0

)
=

1

d
V −1(μ 1)

(
G

−b
cG

)

=
1√
d
V −1

(
μ − b

c
1

)
σs . (3.4)

The self-financing shifting strategy s is independent of the benchmark,

since none of the benchmark’s characteristics appears in the formula above.

The optimal strategy’s information ratio IR = s′μ/σs =
√

d is independent

of the tracking error. The variance of the TEV portfolio is

σ2
P = (xB + s)′V (xB + s) = x′

BV xB + 2x′
BV s + s′V s

= σ2
B +

2√
d

(μB − μMVP) σs + σ2
s ,

where equation (3.4), x′
Bμ = μB, x′

B1 = 1, and b/c = μMVP are used to

derive the covariance term

2x′
BV s =

2√
d
xBV V −1(μ − μMVP1)σs =

2√
d

(μB − μMVP) σs .
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The strategy (3.1) for shifting among TEV portfolios is identical to the

shifting strategy (2.16) for reallocations among frontier portfolios. Then,

the TEV portfolio is efficient if and only if the benchmark portfolio is

efficient. Furthermore, the TEV portfolio is as inefficient as the benchmark

portfolio in terms of difference of variance: σ2
P − σ2

P ∗
(3.3)
= σ2

B − σ2
B∗, where

the star indicates a frontier portfolio with identical expected return. This

shows that the TEV line is the mean-variance frontier shifted to the right

in (μ, σ2)-space. Equation (3.3) can be rearranged to provide the TEV line

μP = μMVP +
√

(μB − μMVP)2 + d(σ2
P − σ2

B) ,

where σs = G/
√

d = (μP − μB)/
√

d is used. The slope of the tangency of

the TEV line in TEV portfolio P is given by

∂μP

∂σP
=

dσP√
(μB − μMVP)2 + d(σ2

P − σ2
B)

. (3.5)

If portfolio managers are only restricted by a tracking error constraint,

they will simply maximize expected return for a given tracking error and

compose TEV portfolios. As a result, the manager chooses active risk equal

to the tracking error constraint. Since the active portfolio has greater total

risk than the benchmark, it does not dominate the benchmark by the mean-

variance criterion. In other words, some frontier portfolios dominate the

active portfolio based on total portfolio risk. However, if risk is measured

as volatility of excess returns, the TEV portfolios have minimum tracking

error and are therefore efficient in excess-mean-variance space but not in

mean-variance space.
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3.2 Constraints on Tracking Error and Beta

Imposing an additional constraint on portfolio beta can reduce the active

portfolio’s inefficiency, as is is shown by Roll (1992). This section presents

an alternative proof of Roll’s optimal benchmark-relative portfolio selection

when tracking error is minimized under an additional restriction on port-

folio beta. We show that the solutions of this TEVBR problem for varying

excess return coincide with the solutions of maximizing excess return when

beta is fixed and tracking error volatility is varied.

Portfolios that allow the holding of cash can be characterized by portfolio

beta to specify the amount of market risk exposure. A low portfolio beta

and high amount of wealth hold in cash is preferable specifically in down

turning markets. In the following, funds are considered that consist of risky

assets only and for which cash holdings are prohibited. Adding a constraint

on beta aims at reducing total portfolio risk by restricting systematic risk.

Problem 3.3 (TEVBR Problem).

Given a benchmark portfolio B with μB > μMVP, a portfolio beta βP,B and

an expected excess return G with G ≥ 0, determine the shifting strategy

such that the tracking error is minimized. Alternatively, if the tracking

error and portfolio beta is given, determine a shifting strategy such that

the expected excess return is maximized:

(1) objective: min
s

σ2
s (2) objective: max

s
s′μ

constraints:
x′

P V xB

x′
BV xB

= βP,B constraints:
x′

P V xB

x′
BV xB

= βP,B

s′μ = G s′V s = σ2
s

s′1 = 0 s′1 = 0 .

Figure 3.2 illustrates TEVBR portfolios for standard beta constraints. The

solution of this problem can be stated in a form similar to the composi-

tion of a frontier portfolio in equation (2.1) by extending the information
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�μP

�

σP

B

frontier portfolios TEVBR portfolios

for βP,B = 0.9, 1, 1.1

Figure 3.2: TEVBR Portfolios for Standard Beta Constraints and

Varying Tracking Error Constraints

matrix to a matrix containing benchmark characteristics. The generalized

information matrix H is defined by

H ≡

⎛⎜⎜⎝
x′

BV

μ′

1′

⎞⎟⎟⎠ V −1(V xB μ 1) (3.6)

=

⎛⎜⎜⎝
σ2

B μB 1

μB a b

1 b c

⎞⎟⎟⎠ .

Its inverse H−1 is given by

H−1 =
1

det H

⎛⎜⎜⎝
ac − b2 b − cμB −a + bμB

b − cμB −1 + cσ2
B μB − bσ2

B

−a + bμB μB − bσ2
B −μ2

B + aσ2
B

⎞⎟⎟⎠ ,
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where the determinant of H is

det H = −a + 2bμB − cμ2
B + (ac − b2)σ2

B . (3.7)

The determinant of the generalized information matrix can be interpreted

as a measure of the inefficiency of the benchmark. As can be seen from

det H
(2.2)
= (ac − b2)(σ2

B − σ2
B∗), the determinant provides a measure for

the difference of variance between the benchmark and the efficient frontier

portfolio B∗ that has identical expected return μB∗ = μB. Roll (1980)

introduces the matrix H for the representation of orthogonal portfolios,

but it is not used when Roll (1992) derives the solution of problem 3.3(1).

We provide an alternative proposition and proof in matrix notation that is

based on the generalized information matrix. This approach reveals some

similarities of the equations (2.16), (3.1), and (3.8) below for the composi-

tion of shifting strategies among frontier, TEV, and TEVBR portfolios.

Proposition 3.4 (TEVBR Portfolio).

The solution of problem 3.3(1) or 3.3(2) is called TEVBR portfolio and is

given by xP = xB + s with optimal shifting strategy

s = V −1 (V xB μ 1) H−1

⎛⎜⎜⎝
(βP,B − 1)σ2

B

G

0

⎞⎟⎟⎠ . (3.8)

The minimum tracking error variance is

σ2
s =

⎛⎜⎜⎝
(βP,B − 1)σ2

B

G

0

⎞⎟⎟⎠
′

H−1

⎛⎜⎜⎝
(βP,B − 1)σ2

B

G

0

⎞⎟⎟⎠
=

(σ2
B − σ2

MVP)G2 − 2G(μB − μMVP)(βP,B − 1)σ2
B + d(βP,B − 1)2σ4

B

σ2
MVP det H

.

(3.9)
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The variance of return of the active portfolio is

σ2
P = (2βP,B − 1)σ2

B + σ2
s . (3.10)

TEVBR problem 3.3(2) with constraints on portfolio beta and tracking

error has optimal shifting strategy s given by equation (3.8), where the

maximum excess return maxs s′μ is given by

G=
(μB−μMVP)(βP,B−1)σ2

B +
√

σ2
MVP detH((σ2

B−σ2
MVP)σ

2
s −(1−βP,B)2σ4

B)

σ2
B − σ2

MVP
.

(3.11)

Proof. First, we rewrite the first constraint

βP,B =
x′

PV xB

x′
BV xB

=
(xB + s)′V xB

x′
BV xB

= 1 +
s′V xB

x′
BV xB

of problem 3.3(1) as s′V xB = σ2
B(βP,B − 1). Then, the Lagrange function

of the TEVBR problem 3.3(1) is

L(x,λ) = s′V s + λ1(σ
2
B(βP,B − 1) − s′V xB) + λ2(G − s′μ) − λ3s

′1 .

The first order condition ∂L
∂s = 2V s − λ1V xB − λ2μ − λ31 = 0 yields

s =
1

2
V −1(λ1V xB + λ2μ + λ31) =

1

2
V −1(V xB μ 1)

⎛⎜⎜⎝
λ1

λ2

λ3

⎞⎟⎟⎠ . (3.12)

Multiplying both sides from the left with (V xB μ 1)′ yields⎛⎜⎜⎝
x′

BV

μ′

1′

⎞⎟⎟⎠ s =
1

2

⎛⎜⎜⎝
x′

BV

μ′

1′

⎞⎟⎟⎠ V −1 (V xB μ 1)

⎛⎜⎜⎝
λ1

λ2

λ3

⎞⎟⎟⎠ =
1

2
H

⎛⎜⎜⎝
λ1

λ2

λ3

⎞⎟⎟⎠
and this equation together with the constraints can be solved for the La-

grange multipliers⎛⎜⎜⎝
λ1

λ2

λ3

⎞⎟⎟⎠ = 2H−1

⎛⎜⎜⎝
x′

BV

μ′

1′

⎞⎟⎟⎠ s = 2H−1

⎛⎜⎜⎝
σ2

B(βP,B − 1)

G

0

⎞⎟⎟⎠ .
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Finally, using the Lagrange multipliers in equation (3.12), the solution (3.8)

is given.

The tracking error variance shrinks from a long equation down to

σ2
s = s′V s

(3.8)
=

⎛⎜⎜⎝
(βP,B − 1)σ2

B

G

0

⎞⎟⎟⎠
′

H−1(V xB μ 1)′ V −1V

·V −1 (V xB μ 1) H−1

⎛⎜⎜⎝
(βP,B − 1)σ2

B

G

0

⎞⎟⎟⎠
(3.6)
=

⎛⎜⎜⎝
(βP,B − 1)σ2

B

G

0

⎞⎟⎟⎠
′

H−1

⎛⎜⎜⎝
(βP,B − 1)σ2

B

G

0

⎞⎟⎟⎠
=

c(σ2
B − 1

c)G
2 − 2cG(b

c −μB)(1 −βP,B)σ2
B + c(a − b2

c )(βP,B −1)2σ4
B

det H

=
(σ2

B − σ2
MVP)G2 − 2G(μB − μMVP)(βP,B − 1)σ2

B + d(βP,B − 1)2σ4
B

σ2
MVP det H

.

Using the first constraint on the covariance x′
BV s = (βP,B − 1)σ2

B, the

variance of return of the active portfolio can be simplified to

σ2
P = x′

PV xP = (xB + s)′V (xB + s) = σ2
B + 2x′

BV s + σ2
s

= (2βP,B − 1)σ2
B + σ2

s .

Given the second type of TEVBR problem with constraints on portfolio

beta and tracking error variance, equation (3.9) can be solved for the cor-

responding excess return

G =
(μB−μMVP)(βP,B−1)σ2

B+
√

σ2
MVP detH((σ2

B−σ2
MVP)σ2

s−(1−βP,B)2σ4
B)

σ2
B − σ2

MVP
.
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3.3 Using Constraints to Reduce Inefficiency

One might claim that adding constraints to a portfolio optimization prob-

lem is expected to restrict the set of possible solutions and therefore to

deteriorate the optimal solution. However, additional constraints can also

be used to reduce the inefficiency of the portfolio. Jorion (2003) shows that

imposing an additional constraint on total risk may improve the perfor-

mance of the tracking error restricted portfolio selection. This section de-

rives the optimal combination of constraints on portfolio beta and tracking

error such that the benchmark-relative portfolio selection yields a mean-

variance efficient portfolio.

The following proposition derives the optimal active and beta risk budgets

for achieving efficient portfolios with benchmark-relative portfolio selec-

tion.

Proposition 3.5 (Efficient TEVBR Portfolio).

Given a benchmark portfolio B with μB > μMVP and a benchmark ex-

cess return G, the TEVBR problem 3.3(2) yields a mean-variance efficient

portfolio P ∗ with μP ∗ = μB + G if the constraints are set to

βP ∗,B =
a − 2bμB + cμ2

B + (cμB − b)G

(ac − b2)σ2
B

=
σ2

B∗

σ2
B

+
(μB − μMVP)

dσ2
B

G

σ2
s = σ2

B − a − 2bμB + cμ2
B − cG2

ac − b2 = σ2
B − σ2

B∗ +
G2

d
,

where B∗ denotes the frontier portfolio with expected return μB∗ = μB.

Proof. First, we present the optimal portfolio P ∗ and derive its beta and

tracking error. Second, using this risk budgets as constraints, we show

that P ∗ solves the TEVBR problem. The composition xP ∗ of the efficient

frontier portfolio P ∗ with expected return μP ∗ = μB + G is given by equa-
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tion (2.1). Using equations (2.1), (2.13), and (2.2), the portfolio beta is

βP ∗,B =
x′

P ∗V xB

x′
BV xB

=

(μP ∗ 1)A−1

(
μ′

1′

)
V −1V xB

σ2
B

=

(μB + G 1)A−1

(
μ′

1′

)
xB

σ2
B

=

(μB + G 1)A−1

(
μB

1

)
σ2

B

=

a−b(μB+G)−bμB+c(μB+G)μB

ac−b2

σ2
B

=
a − 2bμB + cμ2

B + G(cμB − b)

(ac − b2)σ2
B

=
σ2

B∗

σ2
B

+
G(μB − μMVP)

dσ2
B

.

The tracking error variance of P ∗ is the variance of the shifting strategy

s = xP ∗ − xB:

σ2
s = s′V s = (xP ∗ − xB)′V (xP ∗ − xB)

= x′
P ∗V xP ∗ − 2x′

P ∗V xB + x′
BV xB

=
a − 2b(μB + G) + c(μB + G)2

ac − b2

−2
a − b(μB + G) − bμB + c(μB + G)μB

ac − b2 + σ2
B

= σ2
B − a − 2bμB + cμ2

B − cG2

ac − b2 = σ2
B − σ2

B∗ +
G2

d
.

If these two risk constraints are used in problem 3.3(2), equation (3.10)

yields the total risk of the TEVBR portfolio

σ2
P = (2βP,B − 1)σ2

B + σ2
s

=

(
2
a − 2bμB + cμ2

B + G(cμB − b)

ac − b2 − 1

)
σ2

B + σ2
B

−a − 2bμB + cμ2
B − cG2

ac − b2

=
a − 2b(μB + G) + c(μB + G)2

ac − b2 ,
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which is identical to the variance of the frontier portfolio with expected

return μB + G.
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Chapter 4

Delegated Investing and

Safety First Approach

A standard assumption in portfolio theory is that there is only one investor

who decides on everything concerning financial investments. Delegation of

asset management can not be studied based on this standard assumption,

since at least one who delegates and one who manages the portfolio is

needed. Delegated investing is the principal’s transfer of responsibility of

decision making on financial investments to an agent. This chapter presents

a model with a principal who delegates portfolio selection to a financial

professional and makes use of risk budgeting. The principal pursues a safety

first approach and controls the agent’s portfolio selection with benchmark

tracking constraints. An optimal constraint on tracking error ensures that

the agent produces a second-best solution. Given sufficient information

and the possibility to additionally restrict portfolio beta, the delegated

portfolio selection yields a first-best solution.

This chapter also could have been titled “Delegated Investing and Maxi-

mizing Sharpe Ratio”. This is a direct consequence of the fact shown in

section 2.3 that the safety first approach yields a portfolio with maximum

Sharpe ratio if returns are normally distributed and the riskless return is
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chosen as threshold return, i.e. τ = rf . The derived optimal portfolios out-

perform a benchmark in terms of Sharpe ratio. The interpretation in terms

of Sharpe ratio maximization is left to the reader. The chapter provides

the interpretations for the safety first approach solely.

4.1 Principal-Agent Problems of Delegating

Investment Decisions

Financial institutions such as banks, pension funds, and insurance funds

play a more or less important role in several ways in most people’s life.

Many private investors delegate investment decisions on the majority of

their wealth to institutional investors. Despite that financial institutions

really do matter, they seem to be less important in financial theory. It is

a common standard assumption that investors invest their wealth directly

at financial markets. The delegation process is often ignored. Financial in-

stitutions come into play when market frictions are considered. They have

advantages in costs that are connected with investing in financial markets.

They have less transaction costs or costs on gathering financial information

due to scale effects. It is the assumption of frictionless markets and homo-

geneous information that permits scientific papers to ignore them. There

is a discrepancy that delegated investing does matter but is neglected in

financial theory. Allen (2001) stresses the need for more research on del-

egated investing: “There is an inconsistency in assuming that when you

give your money to a financial institution there is no agency problem, but

when you give it to a firm there is.”

The focus of corporate finance is the agency problem of an investor giving

money to a firm and how she can ensure that managers act on her behalf.

For the purpose of a simple linguistic differentiation, the principal and the

agent are assumed to be a female and a male person, respectively. More
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generally, principal-agent models are concerned with problems that arise

when a principal hires an agent under conditions of asymmetric informa-

tion. One strand of principal-agent theory studies the implications of the

information asymmetry stemming from the principal’s difficulty of moni-

toring the agent’s actions or characteristics.1 The unobservability of the

agent’s hidden action is the origin of the “moral hazard” problem that the

agent maximizes rather his own utility than the principal’s one. The agent

is not interested in choosing the first-best solution which is the solution

that maximizes the principal’s utility. Instead, he maximizes the compen-

sation payment of his employment contract. The principal is restricted to

solutions that are achievable through contracts and that the agent pro-

vides. Among these restricted alternatives, the one that maximizes the

principals utility is called second-best solution. To find the optimal con-

tract for a second-best solution is the main challenge of principal-agent

problems. Problems that are concerned with the optimal contract design

can further be distinguished in models with managers that have or do not

have private information. In models with private information, managers

receive private signals or have superior forecast ability.2 When agents do

not have private information, information asymmetry may be introduced

with an uninformed investor who lacks information that is common to fi-

nancial professionals. Besides the search for the optimal contract, one of

the central questions in these models is: Which information is sufficient to

be able to achieve a second-best or even a first-best solution?

A special principal-agent relationship arises when the optimal portfolio se-

lection is delegated. The principal could be a private investor who wants

her wealth to be managed professionally or as well the senior management

of a fund who hires a portfolio manager. This principal-agent relationship

1Classical principal-agent problems that are concerned with manager effort, output, and compensation

are analyzed e.g. by Ross (1973), Jensen and Meckling (1976), and Mirrlees (1976, 1999).
2See e.g. Admati and Pfleiderer (1997) and Stoughton (1993).
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is typically subject to the following challenges: First, the agent’s effort

or success to act on the principal’s behalf needs to be measured in order

to implement a performance-stimulating remuneration. Even if the agent

reveals his action, i.e. the composition of a portfolio of assets, the principal

might not have enough information to be able to judge his contribution.

Second, the agent usually does not want to disclose the composition of the

selected portfolio and – to a lesser extend – share the information which

the selection is based upon. Even if the portfolio composition is disclosed,

additional information is necessary to judge the agent’s performance. In-

stead, compensation is often based on benchmark excess returns which are

easy to measure. Then third, a benchmark portfolio needs to be specified

that suits the principal’s objective. Fourth, upscaling of benchmark ex-

cesss return by simply leveraging the benchmark and excessive risk-taking

should be prevented with portfolio constraints. She also might use the

portfolio constraints to control the portfolio selection for the benefit of her

objectives.3

Reasons for delegating are e.g. the superior knowledge and lower trans-

action costs that financial institutions have, capacity limits for financial

decision making, or simply shifting the responsibility of financial success

to someone else. In the following, we focus on problems originating from

differing objectives between principal and agent in portfolio selection. The

investor’s objectives are often well represented in terms of absolute objec-

tives. Poor portfolio performance is specifically evident if the return of

the delegated investment falls below certain thresholds such as minimum

return guarantees or returns of investments like government bonds. There

are also psychological important thresholds such as zero return or the infla-

tion rate which stand for nominal and real maintenance of invested capital.

Threshold returns are usually set to a negative value in stop-loss-strategies.

3In Kraft and Korn (2007), a sufficient statistic for the principal to obtain the first-best solution is the

final value of the “growth optimal portfolio” in a continuous-time model.
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Underperforming a benchmark can often be accepted a few times, but re-

turns falling below these thresholds often trigger regret and considerations

to rethink the delegation. Therefore, this chapter investigates the safety

first approach of minimizing the threshold shortfall probability when in-

vestment decisions are delegated. Stracca (2005) reviews principal-agent

models of delegated portfolio management and concludes: “Another inter-

esting extension appears to be considering less standard utility functions

for principals, say shortfall risk, which may be again particularly relevant

in the pension fund industry.”

4.2 Strategic and Tactical Asset Allocation

This section discusses the possible organizational setup of the management

of a fund and the role of strategic and tactical asset allocation. A three-tier

governance structure is outlined that is concerned with the strategical and

tactical asset allocation as well as with risk allocation in the investment

process.

Fund management aims to meet specified investment objectives of private

or institutional clients. A sound organizational design and corporate gov-

ernance is necessary to be able to efficiently satisfy the commitments. The

delegation of investment authority for managing a fund can be organized

around three basic types of investment decisions:4

– long-term strategic decisions e.g. made by an oversight committee or

a board of trustees,

– medium-term tactical decisions by an investment committee,

– short-term trading decisions delegated to portfolio managers.

4Cardon and Coche (2004) present a three-tier governance structure for central banks. Ho (2004) illus-

trates a three-level framework of risk management for the exchange fund of Hong Kong’s foreign reserves

portfolio.
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Governance structure Investment processrespon-

sible

forOversight Committee

(senior management)
strategic asset allocation

tactical risk allocation

Investment Committee

(senior officials) tactical asset allocation

active risk allocation

portfolio management
portfolio mandates

A B C D

Figure 4.1: Three-Tier Organizational Set-up of Investment

Management

Source: Following Cardon and Coche (2004, p. 15).

The governance structure of a managed fund should represent the organi-

zational framework of an efficient investment decision process. Figure 4.1

illustrates a typical three-tier organizational set-up of delegating invest-

ment decisions. First, the oversight committee or the board of trustees

of the fund decides about the strategic policy or strategic allocation of

a fund’s assets across major asset classes. Then, a layer of tactical as-

set allocation and a layer of actual portfolio mandates is added in order to

benefit from medium-term and short-term investment opportunities. Alter-

natively, a two-tier organizational set-up without the second or third layer

is also suitable to combine passive and active portfolio management. The

common target of these governance structures is to improve the risk-return

profile of the strategic asset allocation with shorter termed investments.
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The board of trustees of a fund is responsible for overseeing generally the

management, activities, and affairs of a fund. Members of the board of

trustees may usually group a oversight committee that is responsible for

the long-term implementation of the fund’s strategic policy. The main in-

strument for implementing the investor’s long-term objective is the strate-

gic asset allocation. Strategic asset allocation establishes the benchmark

allocation among the major asset classes for the long-term investment pro-

cess. Strategic asset allocation is concerned with optimizing the risk-return

trade-off of long-term asset allocation given the specific objectives of an

individual or an organization. Depending on the type of institutional in-

vestor, the benchmark is typically reviewed on a quarterly, one year, or up

to five year basis. The oversight committee decides on the range of possible

deviations of the tactical asset allocation from the strategic benchmark and

sets a tactical risk budget. The extend can be restricted in terms of (ex

ante) tracking error, portfolio beta, or (ex ante) value at risk. The second

tier, an investment committee, decides on deviations from the strategic

benchmark within the given tactical risk budget.

One key difference between strategic and tactical asset allocation is the

time horizon of investment decisions. Tactical asset allocation is applied

routinely as part of continuing asset management. The purpose of tactical

asset allocation is adding value to the strategic allocation by increasing

the investment return or reducing portfolio risk. Another difference is that

tactical asset allocation is benchmark-relative portfolio selection with self-

financing weight reallocations. Underweighting and overweighting of assets

or asset classes aims at outperforming the strategic benchmark. Active

strategies of the portfolio mandates can add additional sources of return

and risk diversification. Placing the same active bet in several markets

reduces market-specific risks. A wide breadth of alpha sources reduces the

dependence of widening and narrowing market inefficiencies.

Several empirical studies investigate the impact of strategic asset allocation
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and active management on portfolio performance. Concerning the variabil-

ity of returns across time, Brinson, Hood, and Beebower (1986), Brinson,

Singer, and Beebower (1991), and Ibbotson and Kaplan (2000) find that

return variability is explained with an R2 of approximately 90 % by the

variability of the policy returns, i.e. returns of the strategic benchmark.

However, this does not imply little opportunity to add value through ac-

tive management; differences between performances of two funds can also

be a result of differing strategic policies. Concerning the variation of re-

turn differences among funds, approximately 40 % of the return difference

among funds is explained by policy differences, according to Ibbotson and

Kaplan (2000). The relatively low R2 of 40 % shows that a large amount of

variability must stem from active management. In total, while the strategic

asset allocation is important for determining the overall level of returns,

successfull active management can essentially distinguish between funds

with similar strategic asset allocations. However, since the costs of active

management reduces the portfolio performance, the average active manager

must be underperforming the market on a cost-adjusted basis.5 Therefore,

it is essential for the success of active managed portfolios to have the ability

to select superior managers in order to earn above-average returns.

Besides strategic asset allocation, another instrument for controlling the

long-term implementation of the institution’s objectives is risk budgeting.

The aim of risk allocation is to give the right amount of flexibility to

delegated investment decisions. A three layer set-up implies three distinct

sources of risk and return. Risk budgets are relevant on each tier:

- Strategic risk budgets are the risks amounts inherent in the strategic

asset allocation of wealth to each individual asset class. Reverse

5The majority of empirical studies find that, on average, active management fails to outperform passive

benchmark portfolios and in many cases underperforms passive indices even before expenses, see e.g.

Malkiel (1995), Carhart (1997). Wermers (2000) finds that funds hold stocks that outperform the market,

but their net returns underperform the market due to expenses and transaction costs.
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optimization using the classical model of Markowitz (1952) can be

used to calculate the implied risk budget that each asset contributes

to total portfolio risk.6

- The tactical risk budget restricts the tactical deviations from the

strategic benchmark portfolio. The oversight committee decides on

the optimal tactical risk budget that is assigned to the members of

the investment committee.

- Active risk is risk introduced through active strategies at the portfolio

level as well as within asset classes. Active risk budgets are assigned

individually to portfolio managers based on their investment skills.

There is little experience with the performance of active management for

alternative risk budgets. However, expectations of the effectiveness of ac-

tive management are necessary when placing active portfolio mandates and

allocating tactical and active risk budgets. The following section presents

a model for the tactical risk allocation decision of the investment commit-

tee when the strategic asset allocation is already completed. The models

presented in chapter 7 address the oversight committee’s problem of the

simultaneous strategic asset allocation and active risk allocation.

4.3 The Model Framework

This section introduces the safety first approach for an investor who del-

egates portfolio selection to an active portfolio manager. The principal

defines a strategic benchmark and delegates portfolio selection to an agent.

Depending on the set of available risk constraints, the principal’s task is

to provide constraints on tracking error and eventually portfolio beta. The

6See also page 17 for the calculation of the asset’s implied risk budgets.
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agent is supposed to choose reallocations of benchmark within set risk lim-

its. The model represents the principal’s problem of allocating a tactical

or active risk budget to one agent as well as the agent’s benchmark-relative

portfolio selection. The model can represent the relation between a private

client and institutional investor as well as a two-tier organizational set-up

of a managed fund.

The principal-agent model is based on standard assumptions of neoclassi-

cal finance as given by assumptions 2.1 (frictionless market) and 2.2 (risky

assets) in chapter 2. Throughout this chapter, the principal is loss avers

and aims at minimizing the probability P (RP < τ) of falling short a fixed

threshold return τ , τ < μMVP, as stated by assumption 2.3’ (Roy crite-

rion). By assumption 2.4, the asset returns are assumed to be normally

distributed. She specifies a strategic benchmark xB and hires an agent

for benchmark-relative portfolio selection. His remuneration is based on

benchmark excess return and therefore he wants to maximize the expected

benchmark excess return E[RP −RB] as stated in assumption 3.1’. There is

no contract available that enables the principal to provide incentives to re-

duce the shortfall probability. The benchmark that should be outperformed

is supposed to be given and have expected return μB with μB > μMVP.

The principal-agent model deviates from the neoclassical finance theory

with respect to an information asymmetry assumption. Due to lack of in-

formation or limited capacity on decision making, investment decisions are

delegated to an agent. Agency costs with respect to the portfolio manager’s

compensation are assumed to be negligible in the principals utility for sim-

plicity – except for the last section 4.8 of this chapter. Instead, we focus

on the principal’s possibilities to control the portfolio selection using risk

constraints on tracking error and eventually portfolio beta. Whether she is

able to determine optimal constraints, depends on her available informa-

tion about the financial market. The subsequent sections reveal that the

following levels of information should be distinguished. The information
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levels are further discussed in section 4.7.

Assumption 4.1 (Information Asymmetry).

The agent knows the expected return μ of all assets and the covariance V of

their returns. The principal has one of the following levels of information:

(a) no information: { },

(b) mean and volatility of returns of TEV portfolios and mean return of

MVP: {μB, σB, μMVP, d},

(c) mean and volatility of returns of frontier and TEV portfolios:

{μB, σB, A}, or

(d) complete information on expected return and covariance of returns

of all assets: {μ, V }.

Sections 4.4 – 4.6 below show how the principal can specify optimal con-

straints given an intermediate level of information. Using risk constraints,

the principal may control the risk and return properties of the portfo-

lio chosen by the manager. The following assumption provides the set of

portfolio constraints that the principal can choose from.

Assumption 4.2 (Principal’s Control Variables).

The principal chooses to restrict the delegated portfolio selection process

via one of the following sets of portfolio constraints:

(a) tracking error σs only,

(b) tracking error σs when portfolio beta βP,B is a fixed standard value,

e.g. βP,B = 1,

(c) tracking error σs and portfolio beta βP,B.
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Principal and agent enter into a contract that induces the agent to maxi-

mize benchmark excess return and gives the principal the choice of certain

risk constraints to control portfolio selection. This framework explicitly

models the principal’s decision problem to choose type and value of con-

straints. In this way, the framework also addresses the problem of the

optimal governance of the portfolio delegation.

4.4 Minimizing Shortfall Probability for

TEV Portfolios

This section shows how investors can pursue the safety first approach when

delegating portfolio selection to benchmark outperforming agents.7 Given

only a tracking error constraint and performance depending salary, port-

folio managers are eager to maximize the benchmark excess return. Sec-

tion 3.1 shows that they compose TEV portfolios. Investors who delegate

portfolio selection to portfolio managers might anticipate such a kind of

portfolio selection. Investors can use the benchmark tracking error con-

straint σs as a tool to control portfolio selection. The threshold shortfall

probability of the TEV portfolio can be reduced in case that the tracking

error constraint is chosen properly. Figure 4.2 illustrates this principal-

agent problem. The corresponding problem for the investor to solve is

7While this section investigates the safety first approach for absolute returns of benchmark-oriented

portfolios, the safety first approach has also been applied to benchmark excess returns: Reich-

ling (1996, p. 40 et seq.) minimizes the probability P (RP − RB < τ) of the benchmark excess return

falling short a threshold return.



© Verlag Dr. Kovač 2008

4.4. Minimizing Shortfall Probability for TEV Portfolios 65

Problem 4.1 (Safety First for TEV Portfolios).

Determine the tracking error constraint such that the probability of the

TEV portfolio falling short the threshold return τ is minimized:

objective: min
σs

P (RP < τ)

constraint: s is solution of the TEV problem 3.1(2) with constraint σ2
s .

Proposition 4.2 (TEV Portfolio with Minimum Shortfall Probability).

The minimum threshold shortfall probability in the benchmark-relative

portfolio selection problem 3.1(2), i.e. the solution of problem 4.1, can be

achieved with tracking error volatility

σs =
1√
d

dσ2
B − (μB − τ)(μB − μMVP)

μMVP − τ
. (4.1)

With this tracking error volatility, the expected excess return is

μ′s =
√

dσs =
dσ2

B − (μB − τ)(μB − μMVP)

μMVP − τ
.

Proof. Section 2.3 shows that the minimum shortfall probability for a given

threshold return τ can be obtained by maximizing the slope (μP − τ)/σP

of the shortfall line. For TEV portfolios, the slope

μP − τ

σP
=

μB +
√

dσs − τ√
σ2

B + 2√
d
(μB − μMVP)σs + σ2

s

can be calculated with the expected return and variance of return from

equations (3.2) and (3.3). It is a function of σs. The maximum satisfies

the condition

∂ μP−τ
σP

∂σs
=

√
dσP − 1

2σP

(
2√
d
(μB − μMVP) + 2σs

) (
μB +

√
dσs − τ

)
σ2

P

= 0 .

After replacing σP as given in equation (3.3), one can solve for σs. This

equation has two solutions. With assumption τ < μMVP < μB, the maxi-

mum is given by equation (4.1).
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the principal’s objective:
minimize shortfall probability P (RP < τ)

principal

control via
tracking error
constraint σs

deliver returns of
active portfolio P

portfolio

manager

the agent’s objective:
maximize benchmark excess return
under tracking error constraint σs

Figure 4.2: Principal Controls the Agent’s Portfolio Selection via

Tracking Error Constraint

Figure 4.3 illustrates the TEV portfolio with minimum shortfall probability

of proposition 4.2. The investor can reduce the benchmark’s threshold

shortfall probability by delegating portfolio selection to a TEV portfolio

composing manager. In this way, the investor profits from delegating, since

she is not able to compose such a shortfall probability reducing portfolio

herself. Proposition 4.2 shows how the investor specifies the tracking error

constraints optimally. Since the optimal tracking error increases with σB

and decreases with μB, the optimal risk budget increases with benchmark

inefficiency. In other words, the more efficient the benchmark is, the tighter

the optimal tracking error constraints are.
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�μP

τ

�

σP

B

P

shortfall line

TEV portfolios

Figure 4.3: TEV Portfolio P with Minimum Shortfall Probability

4.5 Minimizing Shortfall Probability for

TEVBR Portfolios

The systematic risk of a portfolio P with respect to a benchmark portfolio

B can be measured with portfolio beta βP,B ≡ σP,B/σ2
B. The portfolio beta

is often restricted to a standard value close to 1. This section derives the

optimal tracking error budget such that the agent’s benchmark-relative

portfolio selection minimizes the threshold shortfall probability given a

fixed standard beta constraint. This principal-agent problem and its solu-

tion are illustrated in figures 4.4 and 4.5, respectively. As in the previous

section, the principal’s only variable to control the portfolio selection is the

tracking error constraint.
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minimize shortfall probability P (RP < τ)

principal

control via
tracking error
constraint σs

deliver returns of
active portfolio P

portfolio

manager

maximize benchmark excess return
for fixed beta βP,B and tracking error constraint σs

Figure 4.4: Principal Controls Beta-Restricted Portfolio Selection

via Tracking Error Constraint

Problem 4.3 (Safety First for TEVBR Portfolios with Given Beta).

For a given beta constraint, determine the optimal tracking error constraint

such that the probability of the TEVBR portfolio falling short a threshold

return is minimized:

objective: min
σs

P (RP < τ)

constraint: s is a solution of the TEVBR problem 3.3(2)

with constraint σs and fixed βP,B .
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�μP

τ
�

σP

B

PβP,B=0.9
PβP,B=1.0

PβP,B=1.1

shortfall lines for
βP,B = 0.9, 1.0, 1.1

TEVBR portfolios

Figure 4.5: TEVBR Portfolios with Minimum Shortfall Probability

Proposition 4.4 (Minimum Shortfall TEVBR Portfolio for Given Beta).

The minimum threshold shortfall probability in problem 3.3(2) with fixed

beta factor, i.e. the solution of problem 4.3, can be achieved with tracking

error constraint

σs =
σ2

B√
σ2

B − σ2
MVP

·
√

(βP,B − 1)2 +
σ2

MVP det H((1 −2βP,B)σ2
MVP +β2

P,Bσ2
B)2

((μB −τ)(σ2
B −σ2

MVP) +(βP,B −1)(μB −μMVP)σ2
B)

2 .

(4.2)

Given this tracking error volatility, the expected excess return is

μ′s

=
(a−bμB−bτ +cμBτ)(1−βP,B)−(a−2bμB+cμ2

B)βP,B+(ac−b2)σ2
Bβ2

P,B

(μB − τ)(σ2
B − 1

c) + (μB − b
c)(βP,B − 1)σ2

B

σ2
B

c

(4.3)

=d
σP ∗

B ,P ∗
τ
(1 − βP,B) − (σ2

P ∗
B
− σ2

BβP,B)βP,B

μMVP − τ − (μB − τ)
σ2

MVP

σ2
B

+ (μB − μMVP)βP,B

,
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where P ∗
B and P ∗

τ are frontier portfolios with expected return μB and τ ,

respectively.

Proof. We want to maximize the slope (μP − τ)/σP of the active portfolio

solution of the TEVBR problem 3.3(2). It is a function of the tracking

error volatility

μP − τ

σP
=

μB + G − τ√
σ2

s + (2βP,B − 1)σ2
B

,

where the expected excess return G and the variance of return of the active

portfolio σ2
P are given by equations (3.11) and (3.10). The maximum slope

satisfies the condition

∂ μP−τ
σP

∂σs
=

∂G
∂σs

σP − 1
2σP

2σs(μB + G − τ)

σ2
P

= 0

which is equivalent to

0 =
∂G

∂σs
· σ2

P − σs(μB + G − τ)

= σs

√
det H(σ2

s + (2βP,B − 1)σ2
B)√−c(−1 + βP,B)2σ4

B + (−1 + cσ2
B)σ2

s

− σs(μB + G − τ) .

After replacing G as given by equation (3.11), one can solve for σs. Solution

candidates are σs = 0 and the maximum given by equation (4.2). The

provided representation for σs follows from equations (2.7) and (2.8) of

expected return and variance of return of the minimum variance portfolio.

The expected excess return for general βP,B and minimum shortfall proba-

bility can be obtained by inserting the tracking error volatility from equa-

tion (4.2) in equation (3.11) and rearranging with help of equations (3.7)

and (2.13).
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4.6 Minimizing Shortfall Probability with

Efficient TEVBR Portfolios

This section shows that delegated investing can also yield efficient frontier

portfolios. Therefore, the principal has to control portfolio selection via

tracking error and beta constraint, as is illustrated in figure 4.6. Given

optimal specified constraints, the portfolio manager composes an efficient

frontier portfolio.

Problem 4.5 (Safety First for TEVBR Portfolios).

Determine the optimal beta and tracking error constraints such that the

solution of the TEVBR problem 3.3(2) minimizes the threshold shortfall

probability:

objective: min
βP,B ,σs

P (RP < τ)

constraint: s is a solution of the TEVBR problem 3.3(2)

with constraints βP,B and σs .

The first-best solution of the safety first problem is an efficient frontier

portfolio with benchmark excess return G ≡ (a− bτ)/(b− cτ)−μB accord-

ing to proposition 2.6. This portfolio can also be achieved with a TEVBR

portfolio as a solution of above problem 4.5 if portfolio constraints are cho-

sen optimally. Hence, second-best solution and first-best solution coincide.

Proposition 4.6 (Efficient TEVBR Portfolio with Min. Shortfall Prob.).

The minimum shortfall probability portfolio is an efficient frontier portfolio

with expected excess return G ≡ (a− bτ)/(b− cτ)− μB. It is the solution

of the TEVBR problem 3.3(2) with beta constraint

βP,B =
a − 2bμB + cμ2

B + (cμB − b)G

(ac − b2)σ2
B

=
σ2

B∗

σ2
B

+
μB − μMVP

dσ2
B

G

=
(μB − τ)σ2

MVP

(μMVP − τ)σ2
B
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and tracking error variance constraint

σ2
s = σ2

B − a − 2bμB + cμ2
B − cG

2

ac − b2 = σ2
B − σ2

B∗ +
G

2

d

=
a − 2bμB + 2cμBτ − cτ 2 + σ2

B(b2 − 2bcτ + c2τ 2)

(b − cτ)2 ,

where B∗ denotes a frontier portfolio with expected return μB.

minimize shortfall probability P (RP < τ)

principal

control via
tracking error σs

and beta βP,B

constraints

deliver returns of
active portfolio P

portfolio

manager

maximize benchmark excess return
for beta βP,B and tracking error σs constraints

Figure 4.6: Principal Controls Portfolio Selection via Tracking

Error and Beta Constraints
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Proof. Proposition 2.6 shows that the first-best solution of the safety first

problem is an efficient frontier portfolio with expected return

μP = μB + G =
a − bτ

b − cτ
.

According to proposition 3.5, this frontier portfolio is also solution of the

TEVBR problem 3.3(2) if constraints are set to

βP,B =
a − 2bμB + cμ2

B + (cμB − b)G

(ac − b2)σ2
B

=
μB − τ

(b − cτ)σ2
B

=
(μB − τ)σ2

MVP

(μMVP − τ)σ2
B

σ2
s = σ2

B − a − 2bμB + cμ2
B − cG

2

ac − b2

=
a − 2bμB + 2cμBτ − cτ 2 + σ2

B(b2 − 2bcτ + c2τ 2)

(b − cτ)2 ,

where the excess return is replaced using G = μB − (a− bτ)/(b− cτ). The

following alternative representation of the tracking error constraint is not

mentioned in the proposition:

σ2
s = σ2

B +
(a/c − τ 2)

(b/c − τ)2c
− 2μB

(b/c − τ)c

= σ2
B +

(μ2
P ∗ − τ 2)σ2

MVP

(μMVP − τ)2 − 2μBσ2
MVP

(μMVP − τ)
,

where μ∗
P =

√
a/

√
c is the expected return of the frontier portfolio P ∗ with

maximum mean-variance ratio as specified in table 2.2.

Figure 4.7 illustrates TEVBR portfolios when beta is chosen optimally.

They are very close to the efficient frontier. If the tracking error constraint

is also optimal, the portfolio manager composes a TEVBR portfolio that is

mean-variance efficient and minimizes the threshold shortfall probability.

In this case, the second-best solution coincides with the first-best solution.

Proposition 4.6 can additionally be used for generating benchmark domi-

nating portfolios, i.e. portfolios with higher expected return and less total

risk than the benchmark. For this purpose, the threshold return has to be

within specific bounds that are derived in the appendix.
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�μP

τ
�

σP

BP

shortfall line

TEVBR
portfolios

Figure 4.7: Mean-Variance Efficient TEVBR Portfolio P

with Minimum Shortfall Probability

4.7 Information Level and Type of

Delegation

Investment decisions are often delegated due to lack of information on

financial markets. This section discusses the information aspect of the pre-

sented principal-agent model. It identifies the necessary information that

enables the principal to make optimal delegation decisions. Furthermore,

it shows that the agent does not need to disclose his knowledge of all assets’

mean returns and covariances, but to communicate some properties of the

information matrix. In our model, the investor is able to choose the type

of constraints and to set them optimally if she has appropriate financial

information.

Calculating the optimal risk constraints is based on knowing the input

parameters of the formulas derived in the previous three sections. By
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inspecting these formulas, four essential information levels can be differ-

entiated and they were already introduced in assumption 4.1 (information

asymmetry). Without any information, the investor still can delegate port-

folio management, but she cannot be sure whether her objective is satisfied

better than with an investment in the benchmark portfolio. Without in-

formation asymmetry as given by assumption 4.1(d), no delegation would

be needed. The investor could compose the first-best portfolio that is

presented in section 2.3. The remaining two information levels are inter-

mediary levels with increasing information:

{ } ⊂ {μB, σB, μMVP, d} ⊂ {μB, σB, A} ⊂ {μ, V } .

In case of partial information as given by assumptions 4.1(b) and 4.1(c), the

principal can use equations (3.2) and (3.3) to determine the mean and vari-

ance of return of the TEV portfolio that the agent composes if given only a

tracking error constraint. The partial information of assumption 4.1(c) al-

lows the principal to additionally calculate the mean and variance of return

of frontier portfolios.

Table 4.1 shows the type of delegated investing that the principal should

choose depending on her level of information and available set of con-

straints.8 With no information at all, she might choose a random portfolio

or a benchmark portfolio. If she delegates, she cannot be sure that the

managed portfolio is better than the benchmark. If she knows the value of

the variables of formulas for the optimal constraints, she can choose a TEV

or a TEVBR portfolio composing manager and set constraints optimally.

Knowing {μB, σB, μMVP, d}, she can specify optimal constraints for TEV

8This decision problem addresses the governance of the delegation process. Williamson (2000) specifies

four levels in which theories on institutions, also called the new institutional economics, can be classified in.

The principal’s optimization of the constraint values and the agent’s portfolio selection occurs on level 4,

called “neoclassical economics/agency theory”, where the purpose is to get the marginal conditions right.

The framework for choosing the type of constraints, tracking error only or tracking error and portfolio

beta constraint, occurs on level 3 “transaction costs economics” which is concerned with getting the

governance structures and contracts right.
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second-best solution control instruments available to principal

σs σs or {σs, βP,B = 1} σs or {σs, βP,B}
principal’s level

of information

{μB, σB, μMVP, d} TEV TEV TEV

{μB, σB, A} TEV TEV or TEVBR TEVBR9

{μ, V } no delegation no delegation no delegation

necessary necessary necessary

Table 4.1: Type of Second-Best Solution for Given Information Level and

Set of Available Risk Constraints

portfolios. With complete information on expected return and variance of

frontier portfolios as given by information matrix A, she still would not

be able to compose frontier portfolios. However, she is able to specify the

constraints on TEVBR portfolios such that a manager would compose the

first-best solution, a frontier portfolio, for her. If she knows A, but can

add only a standard beta constraint as given by assumption 4.2(b), she has

to choose between a TEV and a TEVBR portfolio. It is best to calculate

shortfall probabilities of TEV and TEVBR portfolio and choose accord-

ingly. With all information, {μ, V }, there would be no need of delegation,

since the investor could compose frontier portfolios herself.

One might argue that investors usually may not have sufficient information

at all to choose any constraints optimally. The optimal tracking error

constraint of the TEV problem is a function σs = σs(μB, σB, μMVP, d). The

manager can reveal μB, σB, μMVP, and d without the delegation becoming

9With optimal chosen constraints σs and βP,B , the resulting second-best solution, a TEVBR portfolio,

coincides with the first-best solution.
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dispensable, since he does not need to disclose his knowledge on expected

returns and covariance of returns of all assets.10 The principal could also

research these variables on her own. The model shows that adapting the

tracking error constraint is necessary if the shape of the mean-variance

frontier changes fundamentally. The investor does not need to care about

changes of single securities’ expected returns and covariances. In this way,

the model incorporates a typical feature of condensing information in the

delegation process.

4.8 Optimization with Management Fee

The agent’s remuneration has been neglected so far in the delegation pro-

cess. This section shows how a stylized contract can be specified to induce

the manager to choose the optimal active return and risk combination of

the second-best solution. Second, we derive the optimal active risk budget

given that a management fee reduces the portfolio return.

We consider a manager employment contract that puts incentives to gen-

erate active return and disincentives on active risk. While performance

dependent compensation is usually based on ex post observations of port-

folio return, the manager composes the portfolio based on ex ante beliefs.

The expected compensation is introduced as a rate f of total portfolio

value that depends on the ex ante active return μs and active risk σs:

f(μs, σs) ≡ c0 + c1μs − c2σ
2
s = c0 + c1

(
μs − c2

c1
σ2

s

)
with positive constants c1, c2 and fixed compensation c0. The fixed com-

pensation element c0 is a component added to the contract considered

10Some models implicitly assume that the agents disclose a substantial part of their private information.

In the work of van Binsbergen, Brandt, and Koijen (2007, p. 10), the principal needs to know the assets’

expected returns and their covariances with the delegated portfolios.
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in Cornell and Roll (2005). While the principal’s net return is reduced

by the management fee, the agent maximizes his expected compensa-

tion based on returns before deduction of expenses. This contract in-

duces the agent to compose TEV portfolios that are presented in sec-

tion 3.1. Given a fixed amount of active risk σs, the portfolio manager

composes TEV portfolios with μs =
√

dσs and his expected compensation

is f(
√

dσs, σs) = c0 + c1
√

dσs − c2σ
2
s . The principal can set the constants

c1 and c2 such that the agent chooses the optimal active risk and return of

proposition 4.2. The first order condition on the agent’s maximum com-

pensation

∂f

∂σs
= c1

√
d − 2c2σs = 0

and the second order condition ∂2f/∂σ2
s = −2c2 < 0 yield the optimal

ratio

c2

c1
=

√
d

2σs
=

d

2μs
, (4.4)

where μs and σs are given in proposition 4.2. Holding this ratio fixed, the

value of c1 or c2 as well as the fixed compensation rate c0 can be negotiated

arbitrarly by principal and agent.

In the following, we show how the principal can account for that the man-

agement fee reduces the portfolio return. The expected portfolio return

after management costs is μP − f(μs, σs). Although the portfolio man-

ager’s salary depends on ex post realizations of portfolio return, the active

portfolio composition and the negotiation of the compensation contract are

based on ex ante expectations. The design of the optimal contract should

take into consideration that the management fee reduces the portfolio re-

turn. The procedure of contract negotiation might be structured in four

steps: In the first step, principal and agent agree on a total expected fee f̂

and to restrict tracking error only.
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Figure 4.8: Ex Management Fee TEV Portfolios with Minimum

Shortfall Probability

As a second step, the principal determines the optimal active risk of the

minimum shortfall portfolio among all TEV portfolios after reduction of

the management fee. Figure 4.8 illustrates TEV portfolios in (μ, σ)-space

with and without reduction of management fees as well as TEV portfolios

with minimum shortfall probability of ex fee returns. Since minimizing the

shortfall probability of ex fee returns is equivalent to maximizing the ratio

μP,ex fee − τ

σP,ex fee
=

μP − f̂ − τ

σP
,

the first order condition for the maximum of the ratio yields the optimal

active risk

σ̂s =
dσ2

B − (μB − μMVP)
(
μB − f̂ − τ

)
√

d
(
μMVP − f̂ − τ

)
which also results from proposition 4.2 with threshold return τ + f̂ .
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In a third step, the optimal ratio

c2

c1
=

√
d

2σ̂s
=

1

2

d
(
μMVP − f̂ − τ

)
dσ2

B − (μB − μMVP)(μB − f̂ − τ)

needs to be fixed in contract negotiation to achieve the optimal amount of

active risk and return. In the last step, the fixed compensation rate c0 and

the constant c1 are adjusted in order to satisfy c0 + c1(μ̂s − σ̂2
sc

∗
2/c

∗
1) = f̂ ,

e.g. by setting c0 = 0 and c1 = f̂
μ̂s−σ̂2

sc∗2/c∗1
. If the portfolio manager chooses

active risk different from σ̂s, his expected compensation rate will be less

than f̂ . This could even improve the ex fee portfolio performance as is

indicated by the dashed lines in figure 4.8.
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Appendix

This appendix derives bounds on the threshold return and on the active risk

for which the safety first approach yields benchmark dominating frontier

portfolios. These bounds are valid for all problems with efficient portfolios

as solution. Hence they can also be used to ensure that the solution is not

only efficient but also benchmark dominating, e.g. for the TEVBR problem

discussed in section 4.6.

Suppose we are trying to obtain benchmark dominating portfolios with the

safety first approach. How should the threshold return be specified in this

case? Figure 4.9 illustrates lower and upper bounds on threshold returns,

τ ∗ and τ̂ , for which problem 2.5 has a benchmark dominating solution.

The smaller the distance of benchmark and efficient frontier, the tighter

the bounds on the optimal threshold return are.

�
μP

τ ∗

τ̂

�

σP

BB∗

B̂

� �

�

Figure 4.9: Bounds on Threshold Return and Shortfall Lines
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Proposition 4.7 (Bounds on Threshold for Dominating Frontier Ptfs.).

Let B denote a benchmark with expected return μB, μB > μMVP, and vari-

ance of return σ2
B. The solution of the safety first problem 2.5 dominates

benchmark B if and only if the threshold return satisfies

a − bμB

b − cμB
≤ τ ≤ μMVP −

√
d σ2

MVP√
σ2

B − σ2
MVP

.

Proof. Proposition 2.6 shows that the solution of the safety first prob-

lem 2.5 is an efficient frontier portfolio. A frontier portfolio dominates

the benchmark B if it is a convex combination of the frontier portfo-

lios B∗ and B̂ as illustrated in figure 4.9. Portfolio B∗ has expected re-

turn μB and has minimum shortfall probability for the threshold return

τ ∗ = (a − bμB)/(b − cμB) according to proposition 2.6. Frontier portfolio

B̂ has variance of return σ2
B̂

= σ2
B and equation (2.2) yields its expected

return μB̂ = b/c +
√

(a − b2/c)(σ2
B − 1/c) using μB̂ > μMVP = b/c. Propo-

sition 2.6 yields the corresponding threshold returns

τ̂ =
b

c
− 1

c

√
a − b2/c

σ2
B − 1/c

= μMVP −
√

d σ2
MVP√

σ2
B − σ2

MVP

.

Whether an efficient portfolio dominates the benchmark, can also be veri-

fied with its tracking error. The following proposition presents bounds on

the active risk and the optimal amount of active risk for a given threshold

return.

Proposition 4.8 (Bounds on Active Risk for Dominating Frontier Ptfs.).

Let μB > μMVP. A frontier portfolio P dominates a benchmark B with

expected return μB if and only if its tracking error variance satisfies

σ2
B − σ2

MVP − 1

d
(μB − μMVP)2

≤ σ2
s ≤ 2

(
σ2

B − σ2
MVP

) − 2√
d

√
σ2

B − σ2
MVP (μB − μMVP) .
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For given threshold return τ , τ < μMVP, the active risk of the shortfall

minimizing frontier portfolio is

σ2
s = σ2

B − 1

c
− 1

d

(
μB − b

c

)2

+
1

d

(
μB − a − bτ

b − cτ

)2

. (4A.1)

Proof. Jorion (2003, pp. 80f.) derives a relationship between expected

return and tracking error variance of frontier portfolios. For a frontier

portfolio P with μP ≥ μB, it reads:

μP = μB +

√
dσ2

s − d

(
σ2

B − 1

c

)
+

(
μB − b

c

)2

. (4A.2)

According to proposition 4.7, the set of dominating portfolios is the set of

convex combinations of portfolio B∗ and B̂. For μB∗ = μB, equation (4A.2)

has solution

σ2
s = σ2

B − 1

c
− 1

d

(
μB − b

c

)2

= σ2
B − σ2

MVP − 1

d
(μB − μMVP)2 .

This lower bound is due to Jorion (2003, p. 80).

For μB̂ = b
c +

√
(a − b2/c) (σ2

B − 1/c), the solution is

σ2
s =

1

d

(
μB − b

c
−

√(
a − b2

c

)(
σ2

B − 1

c

))2

+

(
σ2

B − 1

c

)
− 1

d

(
μB − b

c

)2

= 2

(
σ2

B − 1

c

)
− 2√

a − b2/c

√
σ2

B − 1/c

(
μB − b

c

)
= 2

(
σ2

B − σ2
MVP

) − 2√
d

√
σ2

B − σ2
MVP (μB − μMVP) .

With expected return μP = (a − bτ)/(b − cτ) of the shortfall minimizing

portfolio in proposition 2.6, equation (4A.2) yields equation (4A.1).
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Chapter 5

Delegated Investing

and Value at Risk

Optimization

Value at Risk (VaR) has established as a standard risk measure for the

risk management of investment portfolios. While the portfolio optimiza-

tion based on VaR as discussed in section 2.4 is well known, the VaR

minimization for benchmark-relative portfolio mandates needs further in-

vestigation. This chapter describes the VaR optimization of portfolios that

are constructed to outperform a benchmark portfolio given a limit on active

risk. It is relevant for the risk management of financial institutions that

give incentives to portfolio managers to outperform a benchmark. While

it is unquestionable that portfolio managers have to take risks to gener-

ate superior returns, the more controversial question is “How much risk is

optimal?”. This chapter is supposed to answer this question.

A standard element of portfolio managers’ remuneration is that the com-

pensation depends on the portfolio performance relative to benchmark per-

formance. It induces incentives to portfolio managers to reallocate portfolio
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weights from a benchmark portfolio and to increase active risk. Risk man-

agement controls the managers’ risk taking by restricting active risk. While

portfolio managers care about staying within active risk limits, risk man-

agement is concerned about the level of the portfolio’s VaR at the overall

level. So, the risk measures that are relevant to active managers and risk

management may differ. The chapter presents a principal-agent model for

studying such a relationship.

The following sections show how to minimize VaR when portfolio selection

is delegated to a tracking error restricted portfolio manager. Active risk

limits can be used to control portfolio selection and influence the resulting

VaR. Section 5.1 derives the optimal amount of active risk that yields a

benchmark relative portfolio with minimum VaR. Section 5.2 derives the

optimal active risk for beta restricted portfolios. Section 5.3 shows how

active risk and portfolio beta should be chosen to obtain a mean-variance

efficient portfolio with minimum VaR. In contrast to the previous chapter,

we refrain from discussing the information issues in this chapter.

5.1 Minimizing the VaR for TEV Portfolios

This section studies the optimal control of the delegated portfolio selection

with active risk limits when the principal aims at minimizing the portfolio’s

VaR. The principal hires an agent who aims at outperforming a given

benchmark portfolio and restricts benchmark deviations with a tracking

error constraint, as illustrated in figure 5.1.

As in the previous chapter, the assumptions 2.1 (frictionless markets), 2.2

(asset returns), 2.4 (normally distributed asset returns) apply. Now, for a

given shortfall probability p = P (RP < τ), the principal wishes to mini-

mize VaR or, equivalently, maximize the threshold return τ according to

assumption 2.3” (Kataoka criterion). She delegates portfolio selection and
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maximize threshold return τ
given a shortfall probability p

principal

control via
tracking error
constraint σs

deliver returns of
active portfolio P

portfolio

manager

maximize benchmark excess return
under tracking error constraint σs

Figure 5.1: Controlling the VaR of a Benchmark-Relative Portfolio

via the Tracking Error Constraint

controls the benchmark-relative portfolio selection via constraints. Follow-

ing assumption 3.1’, the agent maximizes expected excess return under the

specified constraints.

Problem 5.1 (Minimize the VaR for TEV Portfolios).

Determine the optimal constraint on tracking error such that the VaR of

the TEV portfolio is minimized or, equivalently, such that the threshold

return is maximized:

objective: max
σs

τ

constraint: P (RP < τ) = p

P is solution of the TEV problem 3.1(2) with constraint σ2
s .
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Figure 5.2 illustrates the maximum achievable threshold and TEV portfolio

for a shortfall probability p = P (RB < 0) of nominal maintenance of the

benchmark. In comparison with a passive investment in the benchmark

B, the investor can achieve a higher threshold return with equal shortfall

probability by delegating portfolio selection. Given a shortfall probability

p and normally distributed asset returns, the shortfall line μP = τ + mpσP

has slope mp ≡ (μP − τ)/σP = Φ−1(1 − p). A necessary condition for

the existence of a solution of problem 5.1 is that the slope of the shortfall

line is greater than the slope
√

d of the TEV line’s asymptote. Otherwise,

there would always exist an intersection of shortfall line and TEV line

when the target return is increased. A positive benchmark excess return

is guaranteed when the tangent on the TEV line at the benchmark has a

slope that is greater than the slope of the shortfall line. By equation (3.5),

an upper bound on the slope of the shortfall line is given by mp ≤ dσB

μB−μMVP
.

The restriction
√

d < mp ≤ dσB

μB−μMVP
on the slope is equivalent to the

condition Φ
(
− dσB

μB−μMVP

)
≤ p < Φ

(
−√

d
)

on the shortfall probability.

�μP

τ ∗
�

σP

B

P

shortfall lines

TEV portfolios

Figure 5.2: Maximum Threshold for TEV Portfolios for a Given

Shortfall Probability
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Proposition 5.2.

Let μB > μMVP and Φ
(
− dσB

μB−μMVP

)
≤ p < Φ

(
−√

d
)

hold. The TEV

portfolio with minimum VaR is achieved with tracking error

σs =

√
dσ2

B − (μB − μMVP)2

m2
p − d

− 1√
d

(μB − μMVP)

and the maximum threshold is

τ ∗ = μMVP −
√

(m2
p/d − 1)(dσ2

B − (μB − μMVP)2) .

Proof. The threshold return of the shortfall line through a TEV portfolio

can be stated as a function of the portfolio’s tracking error

τ = μP − mpσP = μB +
√

dσs − mp

(
σ2

B +
2√
d

(
μB − b

c

)
σs + σ2

s

)1/2

,

where expected return μP and standard deviation σP of the TEV portfolio

are replaced using equations (3.2) and (3.3). The optimal tracking error

constraint σs results from the conditions ∂τ/∂σs = 0 and ∂2τ/∂σ2
s < 0.

5.2 Minimizing the VaR for TEVBR

Portfolios with Given Beta

This section derives the optimal tracking error budget such that the

benchmark-relative portfolio selection with fixed standard beta constraint

minimizes the portfolio’s VaR. As in the previous section, the principal’s

only control variable is the tracking error constraint. Figure 5.3 illustrates

the optimal solution.
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�μP

τ ∗

�

σP

B

PβP,B=0.9

PβP,B=1.0

PβP,B=1.1

shortfall lines for

βP,B = 0.9, 1.0, 1.1

TEVBR

portfolios

Figure 5.3: Maximum Threshold Return for Fixed Beta and Shortfall

Probability with TEVBR Portfolios for βP,B = 0.9, 1.0, 1.1

Problem 5.3 (Minimize the VaR of TEVBR Portfolios with Given Beta).

Given a fixed beta constraint, determine the optimal constraint on track-

ing error in the TEVBR problem 3.3(2) such that the threshold return is

maximized:

objective: max
σs

τ

constraint: P (RP < τ) = p

P is a solution of the TEVBR problem 3.3(2)

with constraints σ2
s and standard βP,B .
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Proposition 5.4.

The optimal constraint on tracking error in problem 5.3 is

σs =

√
det H σ2

MVP(2βP,B − 1) + (βP,B − 1)2m2
pσ

2
B√

m2
p(σ

2
B − σ2

MVP) − det H σ2
MVP

σB . (5.1)

The maximum threshold for TEVBR portfolios with fixed beta and short-

fall probability p is

τ =
1

σ2
B − σ2

MVP

(
μMVPσ2

B − μBσ2
MVP + (μB − μMVP)βP,Bσ2

B

−
√

(σ2
MVP+βP,B(βP,Bσ2

B −2σ2
MVP))(m2

p(σ
2
B − σ2

MVP) −detHσ2
MVP) σB

)
.

(5.2)

Proof. The equation of the threshold shortfall line through a TEVBR port-

folio reads μP = τ +mpσP . The threshold return τ = μP −mpσP is a func-

tion of σs after replacing σP and μP = μB + G as given in equations (3.10)

and (3.11). The optimal tracking error σs can be solved for using the

conditions ∂τ/∂σs = 0 and σs > 0.

5.3 Minimizing the VaR with Efficient

TEVBR Portfolios

If the investor strives for a frontier portfolio with minimum VaR, she

can still delegate portfolio selection to a portfolio manager who composes

benchmark-relative portfolios. She has to control the delegated portfolio

selection with beta and tracking error constraints simultaneously.
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Problem 5.5 (Minimize VaR for TEVBR Portfolios Using β and σs).

Determine the optimal beta constraint and tracking error constraint in the

TEVBR problem 3.3(2) such that the threshold return is maximized:

objective: max
σs,βP,B

τ

constraint: P (RP < τ) = p .

P is a solution of the TEVBR problem 3.3(2)

with constraints σs and βP,B .

Without constraints, the frontier portfolio that maximizes the threshold

return for shortfall probability p is given in proposition 2.8. This portfolio

can also be achieved with a TEVBR portfolio as a solution of problem 5.5.

Figure 5.4 illustrates TEVBR portfolios. They are very close to the efficient

frontier, since beta is chosen optimally. If the tracking error constraint is

also optimal, the portfolio manager constructs a TEVBR portfolio that is

mean-variance efficient.

�μP

τ ∗

�

σP

B
P

shortfall line

TEVBR

portfolios

Figure 5.4: Maximum Threshold and Mean-Variance Efficient

TEVBR Portfolio P for Given Shortfall Probability
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Proposition 5.6.

Given a fixed threshold shortfall probability p, p < Φ(−√
d), the maximum

threshold return of problem 5.5 is given by equation (2.20). It is achieved

with the solution of the TEVBR problem 3.3(2) with beta factor constraint

βP,B =
σ2

MVP

σ2
B

+
(μB − μMVP)

√
σ2

B − σ2
MVP σMVP√

m2
pσ

2
B − (det H + m2

p)σ
2
MVP − (μB − μMVP)2 σ2

B

and tracking error constraint given in equation (5.1). The optimal TEVBR

portfolio for the maximum threshold of problem 5.5 is identical to the

frontier portfolio given in proposition 2.8.

Proof. The frontier portfolio of proposition 2.8 satisfies the shortfall prob-

ability condition for the maximum threshold. Its beta can be derived

from the first order condition ∂τ/∂βP,B = 0, where τ is given in equa-

tion (5.2).
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Chapter 6

An Asset Pricing Model

with Delegating and

Shortfall Probability

Minimizing Investors

In financial decision making, some threshold returns are more relevant than

others. For example nominal or real maintenance of capital can be aimed

for with a threshold return of zero or inflation rate, respectively. Minimum

target returns are guaranteed by many policies of pension funds. These

returns are also often thresholds for managers’ performance evaluation be-

sides of evaluation relative to a benchmark. Managers might anticipate

that they lose clients or their job if their portfolio return falls short a

threshold. If there are many market participants that minimize shortfall

probability according to one threshold return, such behavior can influence

market equilibrium and have implications for asset pricing. Chapter 4

shows how investors can maximize the Sharpe ratio or implement a safety

first approach when delegating investment decisions. This chapter explores
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the implications on asset pricing in the case that a substantial part of in-

vestors pursues such a strategy.

This chapter extends the Capital Asset Pricing Model (CAPM) for dele-

gated investing in the presence of a common threshold return. Section 6.1

recalls basic assumptions and results of the CAPM. Section 6.2 elaborates

the differences in assumptions that are necessary to account for delegated

investing and explores the risk-return relationship in market equilibrium.

6.1 The Capital Asset Pricing Model

Section 2.5 shows how a single investor invests optimally in efficient port-

folios when a riskless asset is available. This section recalls implications

on asset pricing given that all market participants invest in such efficient

portfolios. This Capital Asset Pricing Model was pioneered by Sharpe

(1964), Lintner (1965), and Mossin (1966).The main result is the security

market line, equation (6.1), which states that the expected excess return

of a single asset is linear in market risk. A similar relationship also holds

in case of absence of a riskless asset, as is shown by Black (1972).

The CAPM is based on the assumption 2.1 (frictionless market), assump-

tion 2.3 (mean-variance criterion), and the following assumption of homo-

geneously informed investors.

Assumption 6.1 (Homogeneous Information).

Market participants have identical estimates of the assets’ expected re-

turns, variance, and covariances.

If a riskless asset is traded and all investors spend their wealth in efficient

portfolios only, all individual proportions of wealth spent in risky assets

are identical and given by the tangency portfolio as shown in section 2.5.

The market portfolio is the portfolio of all wealth spent in risky assets. The
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relative compositions of market portfolio and tangency portfolio coincide

as a result of wealth spent efficiently in identical risky proportions:

xM = xT .

In market equilibrium, all market participants invest in the riskless asset

and the market portfolio. This implies that the market return is the only

risk factor for all portfolio returns. The relationship of expected return

and volatility of efficient portfolios is called capital market line and is given

by equation (2.24). As a result of this market equilibrium, the expected

excess return of a single asset depends linearly on the asset’s sensitivity

βi,M ≡ Cov(Ri, RM)/Var(RM) to market returns.

Proposition 6.1 (Security Market Line).

Let assumptions 2.1 (frictionless market), 2.3 (mean-variance criterion),

6.1 (homogeneous information) as well as assumption 2.2 (risky assets) or

2.2’ (riskless and risky assets) hold. Then, the relationship of an asset’s

expected excess return and beta is linear in market equilibrium.

a) If a riskless asset is available by assumption 2.2’, the market portfolio

is efficient and the security market line reads

μi(βi,M) = rf + (μM − rf) βi,M

= rf +
a − 2brf + cr2

f

b − crf
βi,M . (6.1)

b) If a riskless asset is not available by assumption 2.2 and the market

portfolio is efficient, the security market line reads

μi(βi,M) =
a − bμM

b − cμM
+

(
μM − a − bμM

b − cμM

)
βi,M

=
a − bμM

b − cμM
+

−a + 2bμM − cμ2
M

−b + cμM
βi,M . (6.2)
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Proof. a) Under the given assumptions, section 2.5 shows that market

participants invest their wealth in an efficient tangency portfolio T cor-

responding to the riskless investment if available. Given expected return

μT =
a−brf

b−crf
, the variance of return is σ2

T =
a−2bμT +cμ2

T

ac−b2 according to equa-

tion (2.2).

The vector of covariances of all assets with the tangency portfolio can be

written using equation (2.1) as

V xT = (μ 1) A−1

(
μT

1

)

as well as

V xT =
V xT

x′
TV xT

x′
TV xT = β|T

a − 2bμT + cμ2
T

ac − b2 ,

where β|T = (β1,T , . . . , βn,T )′ denotes the vector of betas

βi,T ≡ Cov(Ri, RT )

Var(RT )
, i = 1, . . . , n

of the assets. Since both vectors of covariances are equal, equating both

expressions and solving for the expected return of the assets yields

μ =
a − bμT

b − cμT
1 +

−a + 2bμT − cμ2
T

−b + cμT
β|T . (6.3)

Since all market participants invest in the tangency portfolio and the risk-

less investment exclusively, the tangency portfolio and market portfolio

coincide and μM = μT holds. If a riskless investment is available, replacing

the expected return μT with (a − brf)/(b − crf) and taking the ith entry

yields equation (6.1).

b) If no riskless investment is available, above derivation also holds when

the tangency portfolio is replaced with the efficient market portfolio. The

ith entry of equation (6.3) and μT = μM yield equation (6.2).
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6.2 A Delegated-Agent Asset-Pricing Model

A first attempt to study the implications of delegated investing on asset

pricing is made by Brennan (1993). He suggests an economy with mean-

variance optimizing investors and institutional investors who select portfo-

lios relative to a benchmark portfolio. The resulting market portfolio is a

combination of a mean-variance efficient portfolio and benchmark-relative

TEV portfolio. In market equilibrium, expected returns are characterized

by a two-factor model with factors benchmark and market portfolio. Assets

with higher covariance with the benchmark have, ceteris paribus, a lower

expected return. Brennan’s empirical evidence fails to support the model’s

predictions, but Gómez and Zapatero (2003) find empirical evidence for

Brennan’s two-factor model.

Cornell and Roll (2005) also stress the importance of institutional investors

in asset pricing and suggest to extend the CAPM to account for delegated

investing. They assume the active manager’s compensation schedule to

be a trade off between excess return and tracking error volatility. They

find that “when all investment decisions are delegated, the preferences and

beliefs of individuals would be completely superseded by the objective func-

tions of managers”. In their model, the asset prices in market equilibrium

result from the trade off between excess return and tracking error in the

managers’ compensation plan. However, they do not account for the inter-

action of principal and agent when negotiating the contract. The model

presented below advances Cornell and Roll’s delegated-agent asset-pricing

model by accounting for the principal’s objectives. Our approach empha-

sizes the investors’ perspective and their objective to minimize the shortfall

probability or to maximize the Sharpe ratio. The principal is able to con-

trol the agent’s portfolio selection via active risk budgeting. However, the

manager’s objective is still relevant, since the principal’s wealth is invested

in benchmark-relative portfolios. As a result, asset pricing depends on the
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benchmark portfolio as well as market relevant threshold returns. Fur-

thermore, while in their approach only TEV portfolios are active managed

portfolios, we also include TEVBR portfolios in our analysis.

Asset pricing has also been studied in the case that the investors’ port-

folio choice is determined with downside risk measures such as shortfall

probability, expected shortfall, or shortfall variance. Hogan and Warren

(1974) and Bawa and Lindenberg (1977) derive CAPM-like models based

on downside risk measures with the risk-free rate as benchmark return.

Harlow and Rao (1989) generalize these models and derive equilibrium

models based on mean-lower partial moments for an arbitrary target rate

of return. Recently, Ang, Chen, and Xing (2006) test an equilibrium model

with downside risk and find empirical evidence for a premium for stocks

with high downside risk. The following model brings the aspect of dele-

gated investing to shortfall probability minimizing asset pricing models.

In our model, there are two types of portfolio managers who trade on a

market based on assumptions 2.1 (frictionless market) and 2.2 (risky as-

sets): The passive managers invest everything in a benchmark portfolio B.

The active managers select portfolios relative to the benchmark portfolio

B, and they have homogeneous estimates of the expected asset returns μ

and their covariances V . A fraction w of total wealth is invested with

the active managers, the rest 1 − w with the passive managers. These as-

sumptions underlie also the model framework of Cornell and Roll (2005).

We extend their assumptions with assumptions concerning the investors’

tastes and information asymmetry. For our model, we assume that there

is a fixed threshold return τ that is market wide accepted as an important

threshold. The delegating investors’ objective is either a) to maximize the

Sharpe ratio (then τ = rf) or b) to minimize the threshold shortfall prob-

ability P (RP < τ) by Roy’s criterion 2.3’ when asset returns are normally

distributed by assumption 2.4. The investors control the agents’ portfolio

selection via active risk budgeting as discussed in sections 4.4, 4.5, and 4.6.
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They may choose risk constraints as given by assumption 4.2 (principal’s

control variables) while active managers maximize benchmark excess return

given these restrictions as indicated by assumption 3.1’ (maximize excess

return). Investors have partial or total information as given by assump-

tion 4.1(b), (c), and (d) (information asymmetry).1 The assumption 6.1 is

restricted to homogeneous information within the group of active managers

and within the group of investors.

Proposition 6.2.

Given above assumptions, the relationship between an asset’s expected

return and its beta in market equilibrium depends on the level of the

investors’ information about the financial market.

a) Given information level {μB, σB, μMVP, d}, it is

μj = μMVP + (μM − μMVP) βj,M + K (βj,MβM,B − βj,B) , (6.4)

where K is a positive constant and defined as

K ≡
√

dσ2
B

wσs
=

dσ2
B(μMVP − τ)

w(dσ2
B − (μB − τ)(μB − μMVP))

.

b) Given information level {μB, σB, A}, it is

μj = τ + (μM − τ)βj,M + K (βj,MβM,B − βj,B) , (6.5)

where K ≡ (μMVP − τ)
σ2

B

σ2
MVP

1−w
w .

c) Given information level {μ, V }, there is no need to delegate and the

principals invest in the tangency portfolio with μM = μT = a−bτ
b−cτ .

The returns are described by the security market line (6.2) of the

Black-CAPM.

1Fully informed investors are also considered in Brennan (1993, p. 11 et seq.). Brennan concludes that

the CAPM-version of Black holds in this case.
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Proof. Since there are only two representative managers and there is only

one market relevant threshold return in the economy, the market equilib-

rium is rather simple. The market portfolio consists of the active managed

portfolio xA = xB + s as well as of the passive portfolio xB, weighted with

the proportions w and 1 − w, respectively:

xM = wxA + (1 − w)xB = w(xB + s) + (1 − w)xB = xB + ws .

Investors choose type and value of portfolio constraints depending on their

information level. Accordingly, the active portfolio is a shortfall minimizing

TEV or TEVBR portfolio as discussed in section 4.7. For each information

level, we first calculate the vector of covariance between market and single

asset returns, then the variance of market return. After rewriting the

covariance vector, the relation between an asset’s return and its beta is

derived.

a) If investors know {μB, σB, μMVP, d}, they can specify an optimal tracking

error constraint as given in proposition 4.2 such that the manager composes

a TEV with least threshold shortfall probability among all TEV portfolios.

With s given in equation (3.1) and σs from equation (4.1), the vector of

covariances between returns of the market portfolio and single assets reads

V xM = V xB + wV s = V xB +
wσs√

d

(
μ − b

c
1

)
= β|Bσ2

B +
wσs√

d

(
μ − b

c
1

)
, (6.6)

where β|P = (β1,P , . . . , βn,P )′ denotes the vector of individual asset betas

on a portfolio P . With variance of market return

xMV xM = xMV xB +
wσs√

d

(
μM − b

c

)
,
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the covariance vector can also be written as

V xM =
V xM

x′
MV xM

x′
MV xM = β|Mx′

MV xM

= β|M

(
xMV xB +

wσs√
d

(
μM − b

c

))
= β|MβM,Bσ2

B + β|M
wσs√

d

(
μM − b

c

)
. (6.7)

Since the covariance vectors in equations (6.6) and (6.7) are equal, the vec-

tor equation of the cross-sectional relationship between betas and expected

returns can be derived:

μ =
b

c
1 + β|M

(
μM − b

c

)
+

√
dσ2

B

wσs

(
β|MβM,B − β|B

)
.

Using μMVP = b
c , the jth entry in this system of equations is

μj = μMVP + βj,M (μM − μMVP) +

√
dσ2

B

wσs
(βj,MβM,B − βj,B)

= μMVP + βj,M (μM − μMVP) + K (βj,MβM,B − βj,B) ,

where, using equation (4.1), the constant K is defined by

K ≡
√

dσ2
B

wσs
=

dσ2
B(μMVP − τ)

w(dσ2
B − (μB − τ)(μB − μMVP))

.

b) Given information level {μB, σB, A}, investors choose to delegate invest-

ments to portfolio managers that compose TEVBR portfolios with excess

return G = G and portfolio constraint βP,B of proposition 4.6. With these

constraints and s as given in equation (3.8), the vector of covariances be-

tween market return and single assets is

V xM = V xB + wV s

= V xB + w (V xB μ 1) H−1

⎛⎜⎜⎝
(βP,B − 1)σ2

B

G

0

⎞⎟⎟⎠ . (6.8)
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With variance of market return

x′
MV xM = x′

MV xB + w (x′
MV xB μM 1) H−1

⎛⎜⎜⎝
(βP,B − 1)σ2

B

G

0

⎞⎟⎟⎠ ,

the covariance vector can also be written as

V xM =
V xM

x′
MV xM

x′
MV xM = β|Mx′

MV xM

= β|Mx′
MV xB

+β|Mw (x′
MV xB μM 1) H−1

⎛⎜⎜⎝
(βP,B − 1)σ2

B)

G

0

⎞⎟⎟⎠ . (6.9)

Since the covariance vectors in equations (6.8) and (6.9) are equal, the

vector of expected returns of the single assets can be solved for:

μ = μMβ|M +
(−a + bμB)(βP,B − 1)σ2

B + (μB − bσ2
B)G

(b − cμB)(βP,B − 1)σ2
B + (μB − bσ2

B)G
(−1 + β|M)

+
det H

w + (ac − b2)(βP,B − 1)σ2
B + (b − cμB)G

(b − cμB)(βP,B − 1)σ2
B + (−1 + cσ2

B)G
σ2

B

(
β|MβM,B − β|B

)
.

With excess return G = G and portfolio constraint βP,B of proposition 4.6,

we get after simplifying

μ = τ1 + (μM − τ)β|M + K
(
β|MβM,B − β|B

)
,

where K = (b
c − τ)cσ2

B
1−w
w = (μMVP − τ)

σ2
B

σ2
MVP

1−w
w .

c) Without information asymmetry and market frictions, there is no need

for investors to delegate and the standard risk-return relationship of the

Black-CAPM results.
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Chapter 7

Decentralizing Portfolio

Selection

Strategic asset allocation and active risk allocation are usually studied and

implemented separately. Following this standard approach to set up an

active managed portfolio, chapter 2 presents asset allocation and section 7.2

below presents active risk allocation when both tasks are implemented

independently of each other. A basic prerequisite is that total active risk

is specified exogenously. However, separate optimal solutions for asset

and active risk allocation may yield suboptimal solutions for the combined

allocation problem. This chapter contributes to the literature by merging

both allocation problems and solving them simultaneously. The key to

the optimal solution of most of the portfolio selection problems considered

is the optimal total active risk that is derived endogenously. After the

optimal total active risk is calculated, the asset and active risk allocations

depend on total active risk and can be done separately.

The models presented in this chapter differ in several aspects from the mod-

els of previous chapters. First, by extending from one to several strategies

to generate excess return, we allow for the combination and diversification

across several active strategies. Second, while the benchmark portfolio
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was given in previous chapters, now the strategic allocation as well as

the active risk allocation are optimized simultaneously. Third, the passive

mean-variance frontier is extended by active strategies.

Section 7.1 discusses practical issues of investment companies that decen-

tralize investment decisions and outsource parts of their fund management

and fund administration. Active risk allocation problems are reviewed in

section 7.2. Section 7.3 derives the optimal active risk allocation given an

additional shortfall constraint on the active return. The main contribu-

tion of this chapter is the simultaneous asset and active risk allocation in

section 7.4. The simultaneous allocation is also solved for the safety first

approach and for minimizing the VaR in sections 7.5 and 7.6, respectively.

7.1 Overlay Portfolio Management

While the strategic as well as the tactical asset allocation are typically

decided upon by one entity, as discussed in section 4.2, active strategies

are implemented simultaneously by a set of portfolio managers. The trad-

ing activities of separately managed portfolios need to be coordinated and

customized to the client’s investment policy. Instead of implementing the

client’s investment policy in each of the managed accounts, overlay portfo-

lio management focuses on implementing customized investment solutions

across portfolios.

German investment companies (“Kapitalanlagegesellschaften”, KAGs) are

permitted to outsource investment advisory responsibilities to third parties

since July 1, 2002.1 Master KAGs provide services that help corporate

investors with the outsourcing of fund management and administration

1See the amendment of the Act on Investment Companies (“Gesetz zur weiteren Fortentwicklung des

Finanzplatzes Deutschland, Viertes Finanzmarktförderungsgesetz”, Artikel 3 “Änderung des Gesetzes

über Kapitalanlagegesellschaften, KAGG”), effective on July 1, 2002. The KAGG act merged into the

act “Investmentgesetz”, effective on January 1, 2004.
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services. Besides investment companies, outsourcing fund management is

also relevant for investors who do not regard asset management as a core

competency such as e.g. managers of corporate pension funds. Investors

can delegate the consolidation of their separately managed portfolios to

Master KAGs and benefit from uniform account reports which enables the

investor to better compare their performance. Clients might benefit from

better quality of portfolio management, since a Master KAG revises the

management of sub-funds regularly. The following fund administration and

management services are suitable for outsourcing to Master KAGs:

- fund accounting,

- centralized fund administration and consolidated reporting,

- tax and transaction cost analysis and customization,

- performance and risk attribution and fund controlling.

Master KAGs can offer these services under increasing economies of scale.

Increased demands of clients and regulators in the fields of risk manage-

ment and fund accounting furthers the transfer of administration services

such as performing compliance checks and producing regulatory reports.

As an intermediary between account managers and depositary bank, Mas-

ter KAGs may also take over the coordination of the trading activities of

separate managed accounts and conduct the advised transactions. This

adds the benefits of a direct ownership of security positions: First, it en-

ables to address client specific tax issues at the investor level and avoid

possible tax inefficiencies of separately managed accounts as well as of mu-

tual funds that cannot be customized to the client’s tax issues.2 Second,

trading costs can be reduced when rebalancing the portfolio by consolidat-

ing the managers’ investment decisions and coordinating client-directed

contributions and withdrawals.

2See e.g. the article by Stein and McIntire (2003) that focuses specifically on tax benefits.
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Another major benefit of consolidating separate accounts is that risk man-

agement can be centralized and that the client’s risk policy can be ad-

dressed at the overall portfolio level. The risk management of the overall

risk exposure is referred to as risk overlay. A risk overlay mainly contributes

to the portfolio performance by efficiently allocating risk resources. At the

beginning of an overlay management mandate, the primary objective of the

delegated investment process and risk management is established. Typical

objectives are to maintain the invested capital at a 95 % or 99 % confidence

level, or to outperform an absolute return target or a strategic benchmark,

possibly with a certain probability. The overlay manager is assigned the

responsibility to maintain risks within a given limit which is measured e.g.

by the portfolio’s VaR. In this way, the principal delegates the task of over-

all risk controlling to the risk overlay manager. Within the set risk limit,

the overlay manager allocates risk budgets individually to the asset man-

agers and controls the resulting risk proportions after market movements.

The risk exposures need to be communicated and adapted continuously to

changes in market volatility in order to meet the investor’s objective.

Risks of benchmark-relative mandates can be hedged more easily than

risks of absolute return mandates. Given an index as benchmark, the

risks of the index can be hedged if index futures are available.3 Trading

market risk with futures is a cost-efficient instrument to reduce exposure

in market risk without terminating or even having to inform the portfolio

managers. This procedure separates two aspects of decentralized investing:

alpha production and overlay risk management. Adding a risk overlay

allows the investor to delegate the responsibility to generate alpha to asset

managers and to delegate the risk management to the overlay manager.

Active asset managers can concentrate on outperforming the benchmark

while the total portfolio risk is managed on the overlay level. Despite that

3When an active managed portfolio is turned market neutral with financial instruments and the net

position is self financing, the position is also known as portable alpha source.
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the overlay managers may be assigned a VaR limit, the overlay management

might control the asset managers via active risk limits, specifically in case of

benchmark-relative portfolio selection. So, overlay portfolio management

puts decentralized investment decisions under an umbrella of centralized

risk management.

The contribution of overlay portfolio management to the overall portfolio’s

performance differs from that of alpha strategies by its top-down approach.

Beside the risk overlay, overlay portfolio management can yield additional

earnings with market timing on the overall level. Market timing is the

management of the optimal market exposure during times of down- and

up-turning markets. It is easer to change the market exposure with futures

than with a reallocation of wealth among asset classes. An overlay man-

agement of beta risks also aims at explicitly controlling for downside risks

in order to secure minimum absolute returns.4 In total, overlay portfolio

management allows to unbundle active managed accounts from beta risks

and to secure the client’s absolute investment objective.

7.2 Active Risk Allocation

A central element of decentralizing portfolio selection to multiple man-

agers is assigning active risk limits. This section reviews the literature

on active risk allocation and recalls the optimal active risk allocation in

a basic model framework. Active portfolio management actively devi-

ates from benchmark positions in order to generate excess return. The

reallocation of wealth is self-financing and is called active strategy. As-

signing active risk limits to active strategies is referred to as active risk

budgeting, active risk allocation, or tracking error allocation, since risk

4Herold, Maurer, Stamos, and Vo (2007) compare shortfall risk-based strategies of managing dynamically

the overall risk exposure.



© Verlag Dr. Kovač 2008

110 Chapter 7. Decentralizing Portfolio Selection

limits in terms of tracking error are assigned to active managers or their

strategies. The expected success of an active strategy can be character-

ized by its information ratio, the ratio of active return and active risk:

IR ≡ expected active return/active risk. It can be derived either from

from ex ante expectations or ex post performance data.

Table 7.1 reviews risk allocation models when active strategies are involved.

The aim is to maximize the expected excess return, or equivalently, the in-

formation ratio of the overall active portfolio given a certain active risk

budget. Blitz and Hottinga (2001) investigate the problem of maximizing

the portfolio’s information ratio given a total active risk budget and uncor-

related active strategies. They show that the optimal allocation of active

risk σ∗
si

is proportional to the information ratio IRi. Lee (2000) and Lee

and Lam (2001) derive the optimal active risk allocation for the case of

correlated active returns. For further reference, the optimal solution for

given information ratios instead of given active returns is recalled below in

proposition 7.2. The uncertainty of the excess return of a strategy can also

be interpreted as uncertainty of the information ratio of the strategy or

manager. Molenkamp (2004) proposes to calculate confidence intervals for

the information ratio and to constrain the probability of the excess return

falling short a threshold return. Section 7.3 derives the outstanding closed

form solution of this problem. Scherer (2004, p. 243) investigates the op-

timal allocation of fund wealth to active managers in the presence of an

excess return target. Nevertheless, he also argues that choosing active risk

allocation allows greater flexibility than using weight allocation for several

reasons. First, possible constraints on physical investments are no longer

binding. Second, talented managers might be tied up in small benchmark

allocations. Active risk allocation has impact on the amount of active risk

only and correctly assigns a large part of the risk budget to the best man-

agers. Manager weight allocation has to consider passive risks additionally

and is less flexible in transferring alpha.
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The following analysis is based on the assumption 2.1 (frictionless market)

and the following

Assumption 7.1 (Active Strategies).

Let IR = (IR1, . . . , IRm)′ denote the information ratios of m investment

strategies. These active strategies can be scaled without loss of information

ratio. The active returns of the strategies are correlated with positive

definite correlation matrix Σ, and they are uncorrelated with the n asset

returns.

In the following, we often personify the m strategies with m managers who

are able to develop strategies with given information ratios. In contrast

to the chapters 3 – 6, we do not derive the active strategies but assume

them to be already developed and characterized by their information ratios.

Given a risk budget σsi
, the ith active strategy has expected excess return

IRiσsi
. Figure 7.1 illustrates the linear relationship of active risk and active

return in case of allocation to single strategies as well as in case of optimal

risk allocation to all strategies.

�IRσs

�

σs

IRi

IR∗
P

Figure 7.1: Active Risk Allocation and Active Return
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Problem 7.1 (Active Risk Allocation).

Given a total active risk budget σs,total and correlated active returns, de-

termine the optimal active risk allocation σs = (σs1
, . . . , σsm

)′ to the m

managers such that the portfolio’s expected excess return is maximized:

objective: max
σs

IR′σs

constraint: σ′
sΣσs = σ2

s,total .

Proposition 7.2.

The optimal allocation of active risk of problem 7.1 is

σ∗
s =

Σ−1IR√
IR′Σ−1IR

σs,total

and yields the maximum information ratio

IR∗
P =

√
IR′Σ−1IR . (7.1)

Proof. The Lagrange function of problem 7.1 reads

L(σs, λ) = IR′σs + λ
(
σ2

s,total − σ′
sΣσs

)
.

The first order conditions

∂L

∂σs
(σ∗

s, λ
∗) = IR − 2λ∗Σσ∗

s = 0

∂L

∂λ
(σ∗

s, λ
∗) = σ2

s,total − σ∗
s
′Σσ∗

s = 0

yield σ∗
s = Σ−1IR/(2λ∗), λ∗ =

√
IR′ Σ−1IR/(2σs,total) from which the

stated solution σ∗
s results. The information ratio of this risk allocation on

the overall level is

IR∗
P =

IR′σ∗
s

σs,total
=

√
IR′Σ−1IR ,

where IR′σ∗
s =

∑m
i=1 IRiσ

∗
si

is the total expected excess return.



© Verlag Dr. Kovač 2008

114 Chapter 7. Decentralizing Portfolio Selection

7.3 Active Risk Allocation Given a Shortfall

Constraint on Active Return

Overlay risk management is specifically interested in avoiding the active

return’s underperformance. In case that the overlay risk management is

responsible for the active risk allocation, missing certain disaster threshold

returns could cause the investor to rethink the overlay mandate, e.g. if

the monthly active return is less than τ = −10 % more than once a year.

As a consequence, the active risk allocation may be subject to a further

constraint on the active return’s probability of falling short a threshold

return. This section presents the so far unresolved solution of this risk

allocation problem that is introduced by Molenkamp (2004). He proposes

to add uncertainty to the information ratios and to consider confidence

intervals on active returns when allocating active risk to several managers.

Let IRj, j = 1, . . . , m, denote the risky information ratios. Then, the

risky excess return of the ith manager equals IRjσsj
and the probability of

the excess return falling short a threshold return τ is P
(∑m

j=1 IRjσsj
< τ

)
.

For this section only, the information ratios are not assumed to be constant

but to be normally distributed. The optimization problem reads:

Problem 7.3 (Active Risk Allocation Given a Shortfall Constraint).

Let IR = (IR1, . . . , IRm)′ denote normally distributed information ratios

with positive definite correlation matrix Σ and let τ denote a non-positive

threshold for the active return. Given a total active risk budget σs,target and

a maximum allowable threshold shortfall probability p of the active return,

determine the optimal active risk allocation to each of the m strategies such

that the portfolio’s expected active return is maximized:

objective: max
σs

E[IR]′σs

constraints: σ′
sΣσs ≤ σ2

s,target

P (IR′σs < τ) ≤ p .
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The threshold return is set to a non-positive value, since the expected active

return approaches zero for decreasing active risk and since the shortfall

probability is typically constrained to a value less than 0.5. The following

proposition shows that, given normally distributed information ratios, the

shortfall constraint simply operates as an additional constraint on total

active risk.

Proposition 7.4.

Let τ ≤ 0 and p < Φ

(
−

√
E[IR]′ Σ−1E[IR]

)
. The optimal active risk

in problem 7.3 is allocated analogously as in problem 7.1 without shortfall

constraint but with optimal total active risk

σ∗
s,total = min

{
σs,target,

τ

Φ−1(p) + E[IR∗
P ]

}
,

where the maximum expected information ratio is

E[IR∗
P ] =

√
E[IR]′Σ−1E[IR] .

Proof. Given a correlation matrix Σ ≡ (Corr(IRi, IRj))i,j of information

ratios and a vector σs of active risks, the variance of the total excess return

is the squared total fund active risk

Var (IR′σs) = σ′
sΣσs =

m∑
i=1

m∑
j=1

σsi
σsj

Corr(IRi, IRj) .

The shortfall probability of the active return is

P (IR′σs < τ) = P

(
IR′σs − E[IR]′σs√

σ′
sΣσs

<
τ − E[IR]′σs√

σ′
sΣσs

)

= Φ

(
τ − E[IR]′σs√

σ′
sΣσs

)
,

where Φ denotes the standard normal distribution function. The shortfall

constraint

p ≥ P (IR′σs < τ) = Φ

(
τ − E[IR]′σs√

σ′
sΣσs

)
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is equivalent to

0 ≥ τ − Φ−1(p)
√

σ′
sΣσs − E[IR]′σs

= τ − (
Φ−1(p) + E[IRP ]

) √
σ′

sΣσs , (7.2)

where the information ratio of the portfolio is given by

E[IRP ] = E[IR]′σs/
√

σ′
sΣσs .

The highest expected excess return per unit active risk is achieved when the

portfolio has maximum information ratio E[IR∗
P ] =

√
E[IR]′Σ−1E[IR]

which can be derived analogously to IR∗
P given in equation (7.1). Since the

condition p < Φ

(
−

√
E[IR ′Σ−1E[IR]

)
yields

0 > Φ−1(p) +

√
E[IR ′Σ−1E[IR]= Φ−1(p) + E[IR∗

P ]

≥ Φ−1(p) + E[IRP ] ,

the inequality (7.2) is equivalent to√
σ′

sΣσs ≤ τ

Φ−1(p) + E[IRP ]
.

In total, the shortfall constraint can be rearranged equivalently to a con-

straint on total active risk. Due to the negativity of numerator and denom-

inator, the constraint is least restrictive if the portfolio’s information ratio

E[IRP ] is maximized, i.e. if the constraint reads
√

σ′
sΣσs ≤ τ

Φ−1(p)+E[IR∗
P ] .

With two constraints on total active risk, the minimum of both yields the

optimal total active risk σ∗
s,total ≡ min

{
σs,target,

τ
Φ−1(p)+E[IR∗

P ]

}
. The optimal

active risk allocation

σ∗
s =

Σ−1E[IR]√
E[IR∗

P ]
min

{
σs,target,

τ

Φ−1(p) + E[IR∗
P ]

}
,

can be derived analogously as in proposition 7.2.

]

]
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7.4 Unifying Asset Allocation and Active

Risk Allocation

This sections explores the combined optimization of both asset and ac-

tive risk allocation. Several attempts have been made to combine as-

set allocation and active risk allocation. Waring, Whitney, Pirone, and

Castille (2000, equation A-7) as well as Clarke, de Silva, and Wander

(2002, equation 3) introduce a utility function

u = E[RB] + E[RA] − λBσ2
B − λsσ

2
s

with benchmark return RB, benchmark excess return RA, total benchmark

risk σ2
B and total active risk σ2

s . The drawback of this approach is that

the penalty constants on systematic and active risk, λB and λs, need to

be specified exogenously. We present a model in which the optimal total

active risk is an output of the model.

The impact of active strategies on total excess return depends on the ac-

tive risk and the wealth allocated to active management. If a portfolio

manager is assigned fund weight xi and active risk σsi
for his strategy with

information ratio IRi, the excess return contribution to total active return

is xiIRiσsi
. The simultaneous optimization of xi and σsi

is tricky due to

the product of xi and σsi
. In order to solve the optimization problem,

we first consider a related problem. We assume that the active strategies

are applied on total fund weight 1 and contribute IRiσsi
each to the to-

tal excess return. The expected portfolio return is the sum of weighted

asset returns (or asset class returns)
∑n

i=1 μixi = μ′x and active returns∑m
j=1 IRjσsj

= IR′σs. In the following, the total portfolio risk is mini-

mized for a prespecified level μP of expected total portfolio return.
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Problem 7.5 (Simultaneous Asset and Active Risk Allocation).

Given that m active strategies are applied on total fund weight 1, determine

the optimal asset allocation x = (x1, . . . , xn)
′ to n assets (or asset classes)

and the active risk allocation σs = (σs1
, . . . , σsm

)′ such that total portfolio

risk is minimized for a specified expected portfolio return μP :

objective: min
x,σs

x′V x + σ′
sΣσs

constraints: x′μ + IR′σs = μP

x′1 = 1 .

Closed form solutions can be derived under the assumptions 2.1 (frictionless

market), 2.2 (risky assets), and 7.1 (active strategies). By assumption 7.1,

active returns are uncorrelated with asset returns and covariance terms do

not appear in the total portfolio risk σ2
P = Var(RB +RA) = x′V x+σ′

sΣσs.

The constraint on the expected return of the type x′μ+IR′σs = μP is lin-

ear in both variables xi and σsj
. The problem is quadratic with a quadratic

objective function and linear constraints. The asset returns might also

stand for benchmark returns of asset classes and the asset allocation would

be an asset class allocation in this case.

Proposition 7.6.

Given a target expected portfolio return μP with μP ≥ μMVP, the optimal

total active risk budget for problem 7.5 is

σs,total =
μP − μMVP

d + (IR∗
P )2 IR∗

P (7.3)

and the maximum information ratio is IR∗
P ≡

√
IR′Σ−1IR. The optimal

portfolio is achieved with the asset allocation

x = V −1
(

σs,total

IR∗
P

(μ − μMVP1) + σ2
MVP1

)
(7.4)

and the active risk allocation

σs =
Σ−1IR

IR∗
P

σs,total . (7.5)
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The total portfolio risk is

σ2
P = σ2

MVP +
(μP − μMVP)2

d + (IR∗
P )2 . (7.6)

Proof. The Lagrange function of problem 7.5 is

L(x,σs, λ1, λ2) = x′V x + σ′
sΣσs + λ1 (μP − x′μ − IR′σs) + λ2 (1 − x′1)

and the first order conditions are

∂L

∂x
= 2V x − λ1μ − λ21 = 0 (7.7)

∂L

∂σs
= 2Σσs − λ1IR = 0 (7.8)

∂L

∂λ1
= μP − x′μ − σ′

sIR = 0 (7.9)

∂L

∂λ2
= 1 − x′1 = 0 . (7.10)

Since the covariance matrix V is invertible, equation (7.7) can be solved

for the asset allocation vector

x =
1

2
V −1 (μ 1)

(
λ1

λ2

)
. (7.11)

In order to obtain the Lagrange multipliers λ1 and λ2, we first insert x in

equation (7.10)

0 = 1 − x′1 = 1 − 1

2
λ11

′V −1μ − 1

2
λ21

′V −11

and rearrange to

λ2 = 2
1 − 1

2λ11
′V −1μ

1′V −11
.

Using the expressions x and λ2 as well as σs = λ1

2 Σ−1IR from equa-
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tion (7.8), equation (7.9) yields

0 = μP − x′μ − σ′
sIR

= μP −
(

1

2
λ1μ

′V −1μ +
1

2
λ2μV −11

)
− 1

2
λ1IR

′Σ−1IR

= μP − 1

2
λ1

(
μ′V −1μ + IR′Σ−1IR

) − 1 − 1
2λ11

′V −1μ

1′V −11
μ′V −11

which can be solved for λ1

λ1 = 2
μP1′V −11 − μ′V −11(

μ′V −1μ + IR′Σ−1IR
)
1′V −11 − 1V −1μμ′V −11

.

The expressions for the Lagrange multipliers can be rearranged with the

information matrix elements a = μ′V −1μ, b = μ′V −11, c = μ′V −1μ, with

d ≡ a−b2/c, and with the maximum information ratio IR∗
P =

√
IR′Σ−1IR

to

λ1 = 2
μP c − b

(a + IR∗
P )c − b2 = 2

μP − b
c

a − b2

c + IR∗
P

= 2
μP − μMVP

d + IR∗
P

λ2 = 2

(
1

c
− 1

2
λ1

b

c

)
= 2

(
σ2

MVP − μP − μMVP

d + IR∗
P

μMVP

)
.

Inserting λ1 and λ2 in equations (7.11) and (7.8) yields the optimal asset

and risk allocations

x = V −1 (μ 1)

(
μP−μMVP

d+(IR∗
P )2

σ2
MVP − μP−μMVP

d+(IR∗
P )2 μMVP

)

= V −1
(

μP − μMVP

d + (IR∗
P )2 (μ − μMVP1) + σ2

MVP1

)
= V −1

(
σs,total

IR∗
P

(μ − μMVP1) + σ2
MVP1

)
σs =

μP − μMVP

d + (IR∗
P )2 Σ

−1IR =
Σ−1IR

IR∗
P

σs,total ,

where the total active risk

σs,total =
√

σ′
sΣσs =

μP − μMVP

d + (IR∗
P )2 IRP
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helps to simplify the formulas. Using the elements of the information

matrix, the total portfolio risk is

σ2
P = x′V x + σ2

s,total

=
σ2

s,total

(IR∗
P )2

(
μ′V −1μ − b2

c21
′V −11

)
+

1

c21
′V −11 + σ2

s,total

= σ2
MVP +

(μP − μMVP)2

d + (IR∗
P )2 .

The optimal asset allocation and active risk allocation depend on the op-

timal active risk which is derived endogenously. When the optimal total

active risk is known, the optimal active risk allocation can be implemented

separately from the asset allocation. This is a result of the optimization

and it has not been assumed, as it is usually the case in other models of

active risk allocation.

�μP

�

σP

frontier with active

managed portfolios

frontier without

active management

assets

Figure 7.2: Active and Passive Frontier
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Adding active management extends the mean-variance frontier of the pas-

sive portfolio selection presented in chapter 2, as illustrated by figure 7.2.

When the expected portfolio return is kept constant, the total risk of a

passive frontier portfolio is reduced by the absolute amount

σ2
Ppassive

− σ2
Pactive

=
(μP − μMVP)2

d
− (μP − μMVP)2

d + (IR∗
P )2

=
(μP − μMVP)2(IR∗

P )2

d2 + d(IR∗
P )2 ,

where equations (2.11) and (7.6) are used. The relative reduction of total

risk is

σ2
Pactive

− σ2
Ppassive

σ2
Ppassive

= − (IR∗
P )2

d + (IR∗
P )2 .

Equation (7.6) can be rearranged to a hyperbola equation

σ2
P

σ2
MVP

− (μP − μMVP)2

(d + (IR∗
P )2)σ2

MVP
= 1

which is similar to the hyperbola equation (2.10) for frontier portfolios

without active management; only d is replaced by d + (IR∗
P )2 in the sec-

ond denominator. The slopes of the hyperbola’s asymptotes are then

±√
d + (IR∗

P )2. An alternative problem is that the expected portfolio re-

turn is maximized if a total risk budget of passive and active risk, σ2
P , is

given. The solution is given by proposition 7.6 with expected portfolio

return

μP = μMVP +
√

(d + (IR∗
P )2)(σ2

P − σ2
MVP) .

We can now consider the case that one active strategy is implemented in

each asset class, i.e. the numbers of asset classes and active strategies are

identical, m = n. If the ith manager is assigned fund weight xi and active

risk σsi
, then the active managed asset class contributes xi (μi + IRiσsi

) to



© Verlag Dr. Kovač 2008

7.4. Unifying Asset Allocation and Active Risk Allocation 123

the total expected portfolio return
∑n

i=1 xi(μi + IRiσsi
). The constraint∑n

i=1 xi(μi + IRiσsi
) = μP on the expected return is not linear due to

the product of the variables xi and σsi
. Since an inequality condition∑n

i=1 xi(μi+IRiσsi
) ≥ μP is a concave constraint, the Karush-Kuhn-Tucker

conditions cannot be used to derive the solution. However, the solution of

this problem can be derived by making use of the assumption 7.1 that

scaling of an active strategy is possible without loss of information ratio.

The optimal risk allocation of proposition 7.6 is based on total fund level.

The active risk allocation can also be expressed as a more aggressive imple-

mentation of the strategies that are each restricted to an asset class weight

xi, i = 1, . . . , n. If the ith manager is responsible to generate an expected

return xiμi + IRiσsi
= xi(μi + IRiσsi

/xi) for the total fund, the ith strat-

egy has to have the active risk σsi
/xi and yield an expected excess return

IRiσsi
/xi for the assigned asset allocation xi. The risk allocation σsi

and

excess return contribution IRiσsi
on total fund level remain unchanged.

Summarizing, we have

Proposition 7.7 (Three Step Asset Class and Active Risk Allocation).

The simultaneous optimization of asset class weight xi and active risk al-

location σsi
to the ith asset class manager can be separated in three steps:

First, determine the optimal total active risk budget using equa-

tion (7.3).

Second, allocate asset class weights according to equation (7.4).

Third, allocate the active risk σsi
/xi to the manager of the ith as-

set class, where xi and σsi
are given by equations (7.4) and (7.5),

respectively.
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Example 7.8 (Active Risk for Fixed Income and Equity Portfolios).

In this example, overlay managers want to determine the optimal active

risks and weights for a portfolio consisting of a fixed income fund and an

equity fund. The expected returns and volatilities of the benchmarks and

the information ratios of the fund managers are

μBi
σBi

IRi

fund 1 0.04 0.03 0.5

fund 2 0.10 0.14 0.4 .

The correlation of the fund’s benchmark returns is ρB1,B2
= 0.2 and the

active strategies are uncorrelated. What is the optimal allocation of fund

weights and active risks that maximizes the expected portfolio return given

that total portfolio volatility is restricted to σP = 0.05?

0

0.01

0.02

0.03

0.04

0

0.01

0.02

0.03

0.04
0.055

0.06

0.065

0.07 �

μP (σs1
, σs2

)

σs1σs2

�

�

P ∗
passive

P ∗
active

Figure 7.3: Active Risks and Expected Portfolio Return When

Total Risk is Fixed
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Figure 7.3 displays the expected portfolio return as a function of active

risks when total portfolio risk is restricted to σP = 0.05. The optimal total

active risk is σ∗
s,total = 0.03303 and the optimal solutions without and with

active management are:

portfolio x∗
1 x∗

2 σ∗
s1

σ∗
s2

μ∗
P σP

P ∗
passive 0.7052 0.2948 0 0 0.05769 0.0500

P ∗
active 0.8323 0.1677 0.02579 0.02064 0.07121 0.0500

0 0.05 0.1 0.15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

�

�

μP (σP )

σP

fund 1

fund 2
P ∗

active

P ∗
passive

active frontier

passive frontier

Figure 7.4: Portfolios with and without Active Management

In the case of uncorrelated active returns, the optimal active risks and

information ratios are proportional: IR1/σ
∗
s1

= IR2/σ
∗
s2

= 19.3845. The

total weight x2 of the riskier fund 2 is smaller in the optimal active port-

folio compared to the passive portfolio, since risk is moved from passive to

active risk. If active management is implemented on fund level, funds 1

and 2 are assigned active risks σ∗
s1

/x∗
1 = 0.0310 and σ∗

s2
/x∗

2 = 0.1231, re-

spectively. Figure 7.4 illustrates the mean-variance-frontier of passive and

active managed portfolios.
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7.5 Safety First Approach for Decentralized

Investing

This section derives the optimal total active risk for investors that pursue

the safety first approach when active strategies are available. In contrast

to the previous section, the optimal asset allocation does not depend on

the optimal amount of total active risk. Instead, adding active strategies

enhances the optimal portfolio while the optimal passive allocation remains

unchanged. The results also apply if the Sharpe ratio is maximized.

For the remainder of this chapter, we derive closed form solutions under

the assumptions 2.1 (frictionless market), 2.2 (risky assets), 2.4 (normally

distributed asset returns), 7.1 (active strategies), and the following

Assumption 7.2 (Normally Distributed Active Returns).

The excess returns of the active strategies are normally distributed.

Problem 7.9 (Safety First).

Determine the optimal asset allocation and active risk allocation such that

the probability of falling short a target return τ is minimized:

objective: min
x,σs

P (RP < τ)

constraint: x′1 = 1 .

Proposition 7.10.

Let τ < μMVP. The minimum shortfall probability in problem 7.9 is

achieved with total active risk

σ∗
s,total = σ2

MVP
IR∗

P

μMVP − τ

and the active risk allocation given in equation (7.5). The asset allocation

is identical to the safety first solution P ∗
passive without active management

given in proposition 2.6. The portfolio’s expected return and total portfolio
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risk are

μ∗
P =

a − bτ + (IR∗
P )2

b − cτ
= μP ∗

passive
+ IR∗

P σ∗
s,total (7.12)

σ∗
P

2 =
a − 2bτ + cτ 2 + (IR∗

P )2

(b − cτ)2 = σ2
P ∗

passive
+ σ∗2

s,total . (7.13)

Proof. Analogously to the derivations in section 2.3, the minimum shortfall

probability satisfies the condition

∂ μP−τ
σP

∂μP
(μ∗

P ) =
1

σP
− (μP − μMVP)(μP − τ)

(d + (IR∗
P )2)σ3

P

= 0 ,

where σP is given in equation (7.6) and depends on μP . This condition

yields

μ∗
P =

a − bτ + (IR∗
P )2

b − cτ

which also satisfies the condition

∂2 μP−τ
σP

∂μ2
P

(μ∗
P ) = − μMVP − τ

(d + (IR∗
P )2)

(
(IR∗

P )2+a−2bτ+cτ2

(b−cτ)2

)3/2

= − 1

c4

(μMVP − τ)4

(d + (IR∗
P )2) ((IR∗

P )2/c + a/c − 2μMVPτ + τ 2)3/2 < 0 ,

where det(A) = ac−b2 > 0 ⇒ a/c > (b/c)2 = μ2
MVP is used. This expected

return yields the maximum of the shortfall slope and the minimum of

the shortfall probability according to equation (2.18). It is also used to

calculate the optimal total active risk. Equation (7.6) yields the total

portfolio risk. The alternative expressions of expected return and variance

in equations (7.12) and (7.13) can be derived with the safety first solution

P ∗
passive without active management given in proposition 2.6. The expected

return and variance of the asset allocation can also be derived by

μ′x = μ′V −1 μ − τ1

μMVP − τ
σ2

MVP =
a − bτ

b − cτ

x′V x =
μ − τ1

b − cτ
V −1μ − τ1

b − cτ
=

a − 2bτ + cτ 2

(b − cτ)2 ,
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where the elements of the information matrix and equation (7.4) are used.

Since a passive frontier portfolio is identified uniquely by its expected re-

turn and variance, the vector x is the composition of the passive safety

first portfolio of proposition 2.6.

�μP

�

σP

�

�

P ∗
passive

P ∗
active

τ

Figure 7.5: Portfolios with Minimum Shortfall Probability with

and without Active Management

Figure 7.5 illustrates the optimal active and passive solution of the safety

first problem. In contrast to the previous section, the allocation of fund

weights is independent of the total active risk and is identical to the case

of the safety first approach without active management. Adding active

management to the safety first approach does not influence the strategic

asset allocation. However, it increases the expected return of the portfolio
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by the absolute amount

μ∗
P − μPpassive

=
a − bτ + (IR∗

P )2

b − cτ
− a − bτ

b − cτ
=

(IR∗
P )2

b − cτ
= σ2

MVP
(IR∗

P )2

μMVP − τ
,

where equation (2.19) provides the expected return of the shortfall prob-

ability minimizing portfolio without active management. Proposition 7.10

and above results are also useful for investors that maximize the Sharpe

ratio. As is shown in section 2.3, the threshold return only needs to be re-

placed by the riskless rate. When maximizing the Sharpe ratio, the results

are also valid without the normal distribution assumptions 2.4 (normally

distributed asset returns) and 7.2 (normally distributed active returns).

Overlay portfolio management can include active strategies to enhance the

safety first approach as well as the portfolio’s Sharpe ratio without chang-

ing the strategic allocation.

Similar conclusions are derived by Treynor and Black (1973) in a different

model set-up. They rely on a one-factor market model with uncorrelated

residual returns of assets. Superior information on the expected residual

returns enable the investor to extend the passive frontier that is given in

market equilibrium. In contrast to above model, active return is not gen-

erated with self-financing strategies but with allocation of wealth to single

securities which is not necessarily self-financing. As a second minor point,

active returns are not allowed to be correlated. Furthermore, they do not

consider explicit active risk allocation but allocation of wealth. The most

important difference however is that they assume that the optimal passive

allocation is given by the market portfolio, while we show by optimization

that asset allocation and active risk allocation can be optimized separately.

In the special case of τ = rf , our optimal passive portfolio results to be a

tangency portfolio which corresponds to their market portfolio in market

equilibrium. The following section addresses a problem for which asset

allocation and active risk allocation cannot be separated and both depend

on the optimal amount of active risk.
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7.6 Value at Risk Optimization for

Decentralized Investing

This section presents the optimal asset allocation and active risk alloca-

tion for financial institutions that want to minimize a portfolio’s Value at

Risk. Figure 7.6 illustrates the optimal solution with and without active

management.

�
μP

�

σP

�

�

P ∗
passive

P ∗
active

τ ∗

Figure 7.6: Portfolios with Minimum VaR with and without Active

Management

Problem 7.11 (Minimize VaR).

Given a shortfall probability p, determine the optimal asset allocation and

active risk allocation such that the threshold return is maximized:

objective: max
x,σs

τ

constraint: P (RP < τ) = p .
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Adding active management yields formulas that are similar to those of

the passive case; the only difference is that d is replaced by d + (IR∗
P )2

in proposition 2.8. This stems from the extension of the efficient frontier.

As in section 7.4 and in contrast to the previous section 7.5, the optimal

strategic asset allocation depends on the optimal total active risk.

Proposition 7.12.

Let p < Φ
(
−√

d + (IR∗
P )2

)
. The maximum threshold return of prob-

lem 7.11 is

τ ∗ = μMVP −
√

m2
p − d − (IR∗

P )2 σMVP .

It is achieved with total active risk

σ∗
s,total =

IR∗
P√

m2
p − d − (IR∗

P )2
σMVP

and the asset and active risk allocation given in equations (7.4) and (7.5).

The active portfolio’s expected return and standard deviation are

μ∗
P = μMVP +

d + (IR∗
P )2√

m2
p − d − (IR∗

P )2
σMVP

σ∗
P =

mp√
m2

p − d − (IR∗
P )2

σMVP ,

where mp ≡ Φ−1(1 − p).

Proof. This proof is analogous to the proof of proposition 2.8. If the thresh-

old return is maximized, the optimal active portfolio is on the efficient fron-

tier of active portfolios. Solving the shortfall line equation μP = τ + mpσP

for the threshold return and using equation (7.6) yields the threshold return

τ as a function of the expected return of the frontier portfolio

τ = μP − mpσP = μP − mp

√
σ2

MVP +
(μP − μMVP)2

d + (IR∗
P )2 .
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The first order condition for the optimal expected return

∂τ

∂μP
(μ∗

P ) = 1 − mp(μP − μMVP)

(d + (IR∗
P )2)

√
σ2

MVP + (μP−μMVP)2
d+(IR∗

P )2

= 0

has solution

μ∗
P = μMVP +

d + (IR∗
P )2√

m2
p − d − (IR∗

P )2
σMVP ,

which also satisfies the maximum condition

∂2τ

∂μ2
P

(μ∗
P ) = −(m2

p − d − (IR∗
P )2)3/2

m2
p(d + (IR∗

P )2)σMVP
< 0 .

The total portfolio risk can be calculated with equation (7.6). Using equa-

tion (7.6) and the optimal expected return, the maximum threshold can

be simplified to

τ ∗ = μ∗
P − mpσ

∗
P = μMVP −

√
m2

p − d − (IR∗
P )2 σMVP .

Equation (7.3) yields the optimal total active risk for the optimal expected

return

σ∗
s,total =

IR∗
P√

m2
p − d − (IR∗

P )2
σMVP .
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Chapter 8

Conclusion

The delegation of financial investment decisions has gained much attention

recently by investment companies as well as by academia. The efficient or-

ganization of the investment process within investment companies is a com-

plex interplay of delegation of investment authority, portfolio management,

and risk management. Private investors delegate investment decisions on

the majority of wealth to financial professionals. Despite the obvious rele-

vance of the delegation process, a standard model of delegated investing has

not evolved so far. This dissertation sets up a model framework of delegat-

ing investment decisions to one or several agents and derives implications

on the optimal asset allocation and optimal risk allocation. Relevant ele-

ments from portfolio theory and principal-agent theory are combined to a

holistic theory of delegated investing.

A framework of delegated portfolio selection requires at least one principal

who delegates and one agent who composes the portfolio. In many situa-

tions, the principal’s risk-return preferences may be best represented by an

absolute objective such as the classical mean-variance criterion or the safety

first approach of minimizing the shortfall probability. The agent’s contribu-

tion to portfolio performance is typically measured against a benchmark’s

performance. Restrictions on deviations from the benchmark composition
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lead to portfolio reallocations relative to the benchmark. This benchmark-

relative portfolio selection differs essentially from the absolute portfolio

selection in the tradition of Markowitz. However, the principal may not be

able to force the agent to implement absolute portfolio selection but may

have to rely on benchmark-relative portfolio selection.

The principal’s objective is mainly established by defining a strategic bench-

mark. The senior management of an investment company can try to im-

prove the portfolio’s performance with active management and use risk lim-

its to constrain the active management’s deviations from the benchmark

allocation. Allocating active risk aims at allowing for the right amount

of flexibility in active management. A principal whose objective is to im-

plement the safety first approach should consider the agent’s benchmark-

relative portfolio selection. In our model framework, the principal can

allocate an optimal active risk budget such that the delegated portfolio

selection is optimal among all benchmark-relative portfolios. This second-

best solution can be improved further with an additional constraint on

portfolio beta. Given optimal constraints on active risk and portfolio beta,

the second-best solution coincides with the first-best solution which is the

best portfolio among all possible portfolios.

Investment authority is typically delegated from a less informed to a more

informed person or from a person who oversees several areas to a person

who is specialized in one area. The fundamental question is: Which infor-

mation is essential for delegating? Given that the delegation is controlled

via active risk constraints, the derived formulas of active risk limits re-

veal the information that is sufficient for an optimal risk allocation. The

principal does not need to know the agent’s estimates of expected returns

and covariances. Instead, the expected return of the MVP and the ex-

pected return and volatility of the benchmark-relative portfolios that the

agent composes is sufficient for the optimal active risk constraint. The

agent can disclose this data without the delegation becoming dispensable.
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With additional information on mean and variance of frontier portfolios,

the principal is able to additionally constrain portfolio beta such that the

manager chooses a portfolio that is the first-best solution.

An optimal allocation of active risk and beta risk enhances the results

of the delegated portfolio selection. Changes in the agent’s estimates of

the assets’ expected returns or covariances affect the agent’s reallocation

decision, but not necessarily the principal’s optimal risk allocation. The

risk budgets need not be adapted as long as the agent’s information ra-

tio and fundamental market conditions remain unchanged. In the model,

these market fundamentals are the mean-variance characteristics of fron-

tier portfolios that are given by an hyperbola in mean-volatility space. The

implications of market-wide increasing expected returns on the optimal ac-

tive risk allocation can be analyzed with the derived formulas by shifting

the hyperbola upwards. General changes in volatilities and necessary ad-

justments of the active risk allocation can be analyzed by shifting the

hyperbola sidewards. The comparative analysis does not need to consider

single securities, but only the general location and shape of the hyperbola.

It allows to analyze necessary changes of the optimal risk allocation when

market conditions change in general.

We also study the simultaneous portfolio selection and active risk allocation

when active management is delegated to multiple managers. We refuse the

assumption that asset allocation and active management can be optimized

in general independently of each other. The optimal asset allocation de-

pends on the optimal total active risk if the VaR is to be minimized as well

as if the portfolio volatility is to be minimized at a given expected return

level. In order to avoid suboptimal solutions, the optimal total active risk

has to be determined first. Then, asset allocation and active risk allocation

can be optimized separately. However, we have shown by optimization that

the assumption is valid if the objective is to maximize the Sharpe ratio or to

minimize the shortfall probability. In these two cases, the asset allocation
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and the active risk allocation can be optimized separately: The optimal

asset allocation is identical to the allocation without active management,

and the active management can be optimized independently and be added

to the portfolio.

To summarize, the following results are the main contributions of this

dissertation: We present a theory of delegated investing that combines the

investor’s absolute objective with the active management’s benchmark-

relative objective. The investor can use the strategic asset allocation to set

up a benchmark for the delegated portfolio selection and improve it with

active management. The optimal allocation of active risk provides the

active portfolio managers with the right extend of flexibility to enhance

the strategic decision with active strategies. Closed form solutions of the

optimal active risk allocation are derived for the safety first approach, for

maximizing the Sharpe ratio as well as for minimizing the portfolio’s VaR or

variance. Closed form solutions are also derived for the simultaneous asset

allocation and active risk allocation to multiple active strategies. Asset

allocation and active risk allocation can be implemented separately for the

safety first approach as well as for maximizing the Sharpe ratio. However,

the optimal asset allocation depends on total active risk when minimizing

the portfolio’s VaR or volatility. When all investors delegate investment

decisions and control the delegated portfolio selection with respect to the

safety first approach or the Sharpe ratio, the expected asset returns depend

on the objective functions of both investors and portfolio managers, and

they are described by a two-factor model in market equilibrium.
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